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Dependency Grammar
• Motivated by lexicalized context-free grammars

• Tries to improve attachment ambiguities

• More light-weight structure

• Universal Dependencies project


• More than 100 dependency treebanks for more than 
60 languages
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Dependency parse



Dependency Grammar (cont.)
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• Relationships modeled as directed graph  
(dependency graph)


• Vertices are the words and a special root vertex

• Edge (i, j) from head i to dependent j     


• Describes syntactic dependencies 
• Can be derived from a lexicalized constituency parse


• Exactly one incoming edge for each word (root has no 
incoming edge)


• Properties of the dependency graph

• Weakly connected

• No cycles

• Spanning tree if directed edges are  

replaced by undirected edges



Heads and Dependents
How to choose the head? (possible criteria) 

• Head sets syntactic category of the construction

• E.g. Nouns as heads of noun phrases, verbs are heads of verb 

phrases

• Modifier (dependent) may be optional while head is 

mandatory

• E.g. cats scratch people with claws, subtrees cats scratch and cats scratch 

people are grammatical sentences, but with claws is not

• Head determines the morphological form of the modifier


• E.g. in languages with gender agreements, the gender of the noun 
determines the gender of the adjectives and determiners


• Edges should first connect content words, and then connect 
function words
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Heads and Dependents (cont.)
• Relationships are modeled as asymmetric

• Not all relations are asymmetric


• Example: Coordination (symmetric) 
• Abigail and Max like kimchi with coordinated noun phrase Abigail  

and Max
• How to choose the heads in the coordinated noun phrase?
• Choosing Abigail or Max would be arbitrary 

• Choosing and goes against the principle of linking content words 

first

• Universal Dependencies arbitrarily chooses the left-most item as 

head and uses of conj (=conjoined) and cc (=coordinating 
conjunction) labels
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Labeled Dependencies
• Labels of edges indicate the nature of the syntactic 

relations

• What are the children of like? Who likes what?


• Abigail and Max is nsubj (=noun subject) of verb like

• kimchi but not jook is obj (=object) from verb like

• Negation not is advmod (=adverbial modifier) on the 

noun jook
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Another Example Dependency Parse
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Example Japanese Dependency Parse
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Labels are not that important 
in Japanese bunsetsu parsing

Source: Asahara, Masayuki, et al. "Universal 
Dependencies Version 2 for Japanese."



Dependency Subtrees and Constituents
• Dependency trees hides information present of CFG parse

• Often no meaningful difference between analyses

• Dependency parses can be flat:


• E.g. Abigail was reluctantly giving Max kimchi with head giving
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Projectivity
Definition (Projectivity). An edge from i to j is projective iff all k 
between i and j are descendants of i. A dependency parse is 
projective iff all its edges are projective.  

• Dependency parses derived from lexicalized CFG parses 
are projective ⟹ restricted class of spanning trees


• Syntactic constituents are continues spans
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Projective Example Non-Projective Example



Projectivity (cont.)

• The frequency of projectivity is language dependent

• Projectivity has algorithmic consequences 


• Transition-based parsing

• Simple/efficient but mostly allows for projectivity


• Graph-based parsing

• Complex/inefficient but also allows non-projectivity
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Graph-Based Dependency Parsing
• Dependency graph: 

• Relation r
• Head word 
• Modifier 
• M is length of input 
• Scoring function:  

• Y(w) is the set of valid dependency parses on input w

• |Y(w)| is exponential in the length of the input

y = {(i r j)}

i ∈ {1,2,…, M, ROOT}
j ∈ {1,2,…, M}

|w |
Ψ(y, w; θ)
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Optimal parse:



Arc-Factored Assumption
• Decompose the exponential search space into a sum of 

local feature vectors.

• This assumes that the score is independent of other 

edges


• Arc-factored:
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Higher-Order Dependency Parsing
• Relax arc-factored decomposition to allow higher-order 

dependencies
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grandparent
sibling

Efficient algorithms exist for 
1st, 2nd, and 3rd order 
projective parsing, but it is 
NP-hard to do higher-order 
non-projective parsing



Projective Dependency Parsing
• Lexicalized CFG parsing algorithms can be applied 

directly to get a projective dependency parse

• Lower bound for scoring the edges O(M^2R) 

• There are cubic time algorithms for lexicalized constituent 

parsing

• Hence, arc-factored projective dependency parsing is in 

cubic time in the length of the input


• Second-order projective dependency parsing can also be 
performed in cubic time


• Third-order projective dependency parsing can be 
performed in 
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Non-Projective Dependency Parsing
• Precompute scores for the edges

• Find maximum directed spanning tree to maximize the 

total score (Chu-Liu-Edmonds algorithm)


• Chu-Liu-Edmonds 
complexity


• Can be reduced 
to O(a.    sd) by storing  
the edge scores in a  
Fibonacci heap
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Chu-Liu-Edmonds algorithm 
Jurafsky Figure 15.14



Computing Scores for Dependency Arcs
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Linear Feature-Based Arc Scores

• Same features f  possible as in sequence labeling and 
discriminative constituency parsing including:

• the length and direction of the arc;

• the words wi and wj linked by the dependency relation;

• the neighbors of the dependency arc, 

                                   ;

• the prefixes, suffixes, and part-of-speech of these neighbor words


• Bilexical features (e.g. sush                   )

• Useful but rare, backing off can be helpful


• Many more features are possible
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Neural Arc Scores
• Given vector representation xi for each word wi


• Kiperwasser and Goldberg (2016) feed forward network:


• xi can be a word embedding or a vector incorporating 
context through a BiLSTM layer on the input word 
embeddings (Kiperwasser and Goldberg, 2016)
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O.  is a matrix, br is a vector, each br is a scalar, g is an elementwise 
tang   activation



Kiperwasser and Goldberg (2016)
• No handcrafted lexical features

• Context captured through BiLSTM layer
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Kiperwasser and Goldberg (2016)



Probabilistic Arc Scores

• Unlabeled parse for: we eat sushi with rice

• Used in combination with expectation-maximization for 
unsupervised dependency parsing
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Learning
• We can apply similar learning algorithms to those used in 

sequence labeling


• We can update a feature-based arc scores perceptron 
with:


Argmax can be computed as previously described (Chu-Liu-
Edmonds algorithm)
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Transition-Based Dependency Parsing
• Graph-based dependency parsing


• Offers exact inference (chooses always best-scoring parse)

• Scoring is restricted to individual arcs (first-order features) for non-

projective parsing

• Conflict: some types of attachment require second-order features

• Goes against intuitions of human language processing (sequential 

reading and listening)

• Runs relatively slow, running in cubic time in the length of the input


• Transition-based dependency parsing tries to solve those 
issues

• Sequential sentence processing

• Build-up and update the parsing structure through a simple 

sequence of actions

• Incorporate higher-order features by looking at this structure

• Linear time complexity


• Derivation: the sequence of actions producing the parse

• Multiple derivations possible ⇒ spurious ambiguity
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Transition Systems for Dependency Parsing
• Transition system consists of parser configuration and a 

set of transition actions manipulating the configuration

• Configuration C=(o,b,A)


• o is the stack

• b is the input buffer

• A is the set of created arcs


• Initial configuration:


• Accepting configuration:
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Spanning tree over the input



Transition System: Arc-Standard
• Closely related to shift-reduce, and to the LR algorithm 

used to parse programming languages


• Actions

• SHIFT (precond.: input buffer not empty)


• ARC-LEFT (precond.: top of stack is not ROOT)


• ARC-RIGHT 

• Always results in a spanning tree
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Transition System: Arc-Standard (Example)
• Actions are provided

• Notice the positions of ARC-RIGHT actions
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Transition System: Arc-Eager
• Problem with arc-standard: we are not eager to apply 

ARC-RIGHT since right-branching is common in English

• We tend to SHIFT everything onto the stack and assign arcs later 

to not remove words which still have dependents

• Arc-eager dependency parsing will use the ARC-RIGHT 

action more eagerly


• Modified ARC-RIGHT action:

• Pushes the modifier onto the stack rather then removing it


• Additional ARC-LEFT precondition:

• It can not be applied when the top of stack element already has a 

parent in A

• New REDUCE action:


• Can remove elements from top of stack if it has a parent in 
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Transition System: Arc-Eager (Example)
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Projectivity
• Arc-standard and arc-eager transition systems produce 

projective dependency trees


• Non-projective transition systems include actions which 
create arcs to words that are second or third in the stack


• Pseudo-projective dependency parsing 
• First do the projective dependency parse

• Apply graph transformation techniques to produce a 

non-projective parse
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Beam Search
• “greedy” transition-based parsing tries to do the best 

action at each configuration

• Leads to search errors

• Early wrong decisions propagate and can lock the 

parser in a poor derivation


• Beam search tries to correct search errors by keeping 
multiple partially-complete hypotheses around, called a 
beam
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Beam Search (cont.)
• At step t of the derivation there is a set of k hypotheses 

with score st   and a set of dependency arcs 


• Keep the k best scoring configurations transitioned from 
step t at step t+1 around


• At the last step the highest scoring configuration is 
chosen as the parse
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Scoring Functions for Transition-Based Parsers

• In greedy transition-based parsing the current action can 
be chosen by training a classifier:


• A(x) is the set of admissible actions

• c is the current configuration

• w is the input

• P is the scoring function with parameters 


• Feature-based scoring function:


• Features    can be all sorts of features from the input buffer, stack, 
and already created arcs

32



Neural Scoring Function
• Chen and Manning (2014) feed forward network features:


• the top three words on the stack, and the first three words on the 
buffer;


• the first and second leftmost and rightmost children (dependents) 
of the top two words on the stack;


• the leftmost and right most grandchildren of the top two words on 
the stack;


• embeddings of the part-of-speech tags of these words


• Feed forward network:


• Cubic elementwise activation function
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Learning to Parse
• Mismatch between the supervision, the dependency 

trees, and the classifier’s prediction space (set of parsing 
actions)


• Create new training data by converting parse trees into 
action sequences (often a deterministic algorithm)


• Alternatively, derive supervision directly from the parser’s 
performance
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Oracle-Based Training
• Transition system: action sequence ⟼ dependency tree

• Oracle: dependency tree ⟼ action sequence

• Oracle has to choose between multiple derivations in 

case of spurious ambiguity

• Convert dependency treebank to set of oracle action 

sequences 


• Train transition based parser with: 


• A(i) is length of the action sequence 

• Beam search: sequence score is obtained by summing  

action losses
35

log-likelihood loss



Global Objective
• Objective                                           is locally-normalized 

• Training on individual actions can be sub-optimal with 
respect to the global performance (label bias problem)


• Example: 

• Configuration appears 100 times in training data oracle action a1 is 

used in 51 cases and a2 in 49 cases. a1 results in a cascading 
error whereas a2 results in a single error


• Local objective function prefers a1, but choosing a2 minimizes the 
overall number of errors


• Globally-normalized conditional likelihood:


       Set of all possible action sequences 
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Global Objective (cont.)

• Denominator can be approximated using Beam search:


             Ak is an action sequence on a beam of size K


• Resulting in the loss function:
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Dependency Parsing on Penn Treebank 
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http://nlpprogress.com/english/dependency_parsing.html

http://nlpprogress.com/english/dependency_parsing.html


Applications - Digital Humanities Research
• Searching for pairs of words which might not be adjacent

• Search Google n-grams for: write → code

• Results: write some code, write good code, write all the code, etc.

• Plot use of this dependency arc over time
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Applications - Relation Extraction
• Relation extraction of chapter 17

• Identify pairs of entities with relations to each other


• Example authorship:


• Paris can often be identified by consistent chains of 
dependency relations


• Dependency parsing can help finding new instances of a 
relation based of other instances of the same type
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Applications - Question Answering
• Dependency parsing can improve question answering


• Example query:


• Sentence in corpus:


• In the dependency parses there is an edge from produce to 
Wisconsin in both the question and the potential answer


• Likelihood is increased that this span of text is relevant for 
the answer
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Applications - Sentiment Analysis
• Is sentence positive or negative?

• Polarity can be reversed by negation


• Through dependency parsing we can track the sentiment 
polarity to better identify the overall polarity
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Questions? 
Thank you for listening


