
Felix Dietrich 2020/06/19

Dependency Parsing
Chapter 11

Dependency Grammar
• Motivated by lexicalized context-free grammars

• Tries to improve attachment ambiguities

• More light-weight structure

• Universal Dependencies project

• More than 100 dependency treebanks for more than
60 languages

2

Dependency parse

Dependency Grammar (cont.)

3

• Relationships modeled as directed graph  
(dependency graph)

• Vertices are the words and a special root vertex

• Edge (i, j) from head i to dependent j

• Describes syntactic dependencies
• Can be derived from a lexicalized constituency parse

• Exactly one incoming edge for each word (root has no
incoming edge)

• Properties of the dependency graph

• Weakly connected

• No cycles

• Spanning tree if directed edges are  

replaced by undirected edges

Heads and Dependents
How to choose the head? (possible criteria)

• Head sets syntactic category of the construction

• E.g. Nouns as heads of noun phrases, verbs are heads of verb

phrases

• Modifier (dependent) may be optional while head is

mandatory

• E.g. cats scratch people with claws, subtrees cats scratch and cats scratch

people are grammatical sentences, but with claws is not

• Head determines the morphological form of the modifier

• E.g. in languages with gender agreements, the gender of the noun
determines the gender of the adjectives and determiners

• Edges should first connect content words, and then connect
function words

4

Heads and Dependents (cont.)
• Relationships are modeled as asymmetric

• Not all relations are asymmetric

• Example: Coordination (symmetric)
• Abigail and Max like kimchi with coordinated noun phrase Abigail

and Max
• How to choose the heads in the coordinated noun phrase?
• Choosing Abigail or Max would be arbitrary

• Choosing and goes against the principle of linking content words

first

• Universal Dependencies arbitrarily chooses the left-most item as

head and uses of conj (=conjoined) and cc (=coordinating
conjunction) labels

5

Labeled Dependencies
• Labels of edges indicate the nature of the syntactic

relations

• What are the children of like? Who likes what?

• Abigail and Max is nsubj (=noun subject) of verb like

• kimchi but not jook is obj (=object) from verb like

• Negation not is advmod (=adverbial modifier) on the

noun jook

6

Another Example Dependency Parse

7

Example Japanese Dependency Parse

8

Labels are not that important
in Japanese bunsetsu parsing

Source: Asahara, Masayuki, et al. "Universal
Dependencies Version 2 for Japanese."

Dependency Subtrees and Constituents
• Dependency trees hides information present of CFG parse

• Often no meaningful difference between analyses

• Dependency parses can be flat:

• E.g. Abigail was reluctantly giving Max kimchi with head giving

9

Projectivity
Definition (Projectivity). An edge from i to j is projective iff all k
between i and j are descendants of i. A dependency parse is
projective iff all its edges are projective.

• Dependency parses derived from lexicalized CFG parses
are projective ⟹ restricted class of spanning trees

• Syntactic constituents are continues spans

10

Projective Example Non-Projective Example

Projectivity (cont.)

• The frequency of projectivity is language dependent

• Projectivity has algorithmic consequences

• Transition-based parsing

• Simple/efficient but mostly allows for projectivity

• Graph-based parsing

• Complex/inefficient but also allows non-projectivity

11

Graph-Based Dependency Parsing
• Dependency graph:

• Relation r
• Head word
• Modifier
• M is length of input
• Scoring function:

• Y(w) is the set of valid dependency parses on input w

• |Y(w)| is exponential in the length of the input

y = {(i r j)}

i ∈ {1,2,…, M, ROOT}
j ∈ {1,2,…, M}

|w |
Ψ(y, w; θ)

12

Optimal parse:

Arc-Factored Assumption
• Decompose the exponential search space into a sum of

local feature vectors.

• This assumes that the score is independent of other

edges

• Arc-factored:

13

Higher-Order Dependency Parsing
• Relax arc-factored decomposition to allow higher-order

dependencies

14

grandparent
sibling

Efficient algorithms exist for
1st, 2nd, and 3rd order
projective parsing, but it is
NP-hard to do higher-order
non-projective parsing

Projective Dependency Parsing
• Lexicalized CFG parsing algorithms can be applied

directly to get a projective dependency parse

• Lower bound for scoring the edges O(M^2R)

• There are cubic time algorithms for lexicalized constituent

parsing

• Hence, arc-factored projective dependency parsing is in

cubic time in the length of the input

• Second-order projective dependency parsing can also be
performed in cubic time

• Third-order projective dependency parsing can be
performed in

15

Non-Projective Dependency Parsing
• Precompute scores for the edges

• Find maximum directed spanning tree to maximize the

total score (Chu-Liu-Edmonds algorithm)

• Chu-Liu-Edmonds 
complexity

• Can be reduced 
to O(a. sd) by storing  
the edge scores in a  
Fibonacci heap

16

Chu-Liu-Edmonds algorithm 
Jurafsky Figure 15.14

Computing Scores for Dependency Arcs

17

Linear Feature-Based Arc Scores

• Same features f possible as in sequence labeling and
discriminative constituency parsing including:

• the length and direction of the arc;

• the words wi and wj linked by the dependency relation;

• the neighbors of the dependency arc, 

 ;

• the prefixes, suffixes, and part-of-speech of these neighbor words

• Bilexical features (e.g. sush)

• Useful but rare, backing off can be helpful

• Many more features are possible

18

Neural Arc Scores
• Given vector representation xi for each word wi

• Kiperwasser and Goldberg (2016) feed forward network:

• xi can be a word embedding or a vector incorporating
context through a BiLSTM layer on the input word
embeddings (Kiperwasser and Goldberg, 2016)

19

O. is a matrix, br is a vector, each br is a scalar, g is an elementwise 
tang activation

Kiperwasser and Goldberg (2016)
• No handcrafted lexical features

• Context captured through BiLSTM layer

20

Kiperwasser and Goldberg (2016)

Probabilistic Arc Scores

• Unlabeled parse for: we eat sushi with rice

• Used in combination with expectation-maximization for
unsupervised dependency parsing

21

Learning
• We can apply similar learning algorithms to those used in

sequence labeling

• We can update a feature-based arc scores perceptron
with:

Argmax can be computed as previously described (Chu-Liu-
Edmonds algorithm)

22

Transition-Based Dependency Parsing
• Graph-based dependency parsing

• Offers exact inference (chooses always best-scoring parse)

• Scoring is restricted to individual arcs (first-order features) for non-

projective parsing

• Conflict: some types of attachment require second-order features

• Goes against intuitions of human language processing (sequential

reading and listening)

• Runs relatively slow, running in cubic time in the length of the input

• Transition-based dependency parsing tries to solve those
issues

• Sequential sentence processing

• Build-up and update the parsing structure through a simple

sequence of actions

• Incorporate higher-order features by looking at this structure

• Linear time complexity

• Derivation: the sequence of actions producing the parse

• Multiple derivations possible ⇒ spurious ambiguity

23

Transition Systems for Dependency Parsing
• Transition system consists of parser configuration and a

set of transition actions manipulating the configuration

• Configuration C=(o,b,A)

• o is the stack

• b is the input buffer

• A is the set of created arcs

• Initial configuration:

• Accepting configuration:

24

Spanning tree over the input

Transition System: Arc-Standard
• Closely related to shift-reduce, and to the LR algorithm

used to parse programming languages

• Actions

• SHIFT (precond.: input buffer not empty)

• ARC-LEFT (precond.: top of stack is not ROOT)

• ARC-RIGHT

• Always results in a spanning tree

25

Transition System: Arc-Standard (Example)
• Actions are provided

• Notice the positions of ARC-RIGHT actions

26

Transition System: Arc-Eager
• Problem with arc-standard: we are not eager to apply

ARC-RIGHT since right-branching is common in English

• We tend to SHIFT everything onto the stack and assign arcs later

to not remove words which still have dependents

• Arc-eager dependency parsing will use the ARC-RIGHT

action more eagerly

• Modified ARC-RIGHT action:

• Pushes the modifier onto the stack rather then removing it

• Additional ARC-LEFT precondition:

• It can not be applied when the top of stack element already has a

parent in A

• New REDUCE action:

• Can remove elements from top of stack if it has a parent in

27

Transition System: Arc-Eager (Example)

28

Projectivity
• Arc-standard and arc-eager transition systems produce

projective dependency trees

• Non-projective transition systems include actions which
create arcs to words that are second or third in the stack

• Pseudo-projective dependency parsing
• First do the projective dependency parse

• Apply graph transformation techniques to produce a

non-projective parse

29

Beam Search
• “greedy” transition-based parsing tries to do the best

action at each configuration

• Leads to search errors

• Early wrong decisions propagate and can lock the

parser in a poor derivation

• Beam search tries to correct search errors by keeping
multiple partially-complete hypotheses around, called a
beam

30

Beam Search (cont.)
• At step t of the derivation there is a set of k hypotheses

with score st and a set of dependency arcs

• Keep the k best scoring configurations transitioned from
step t at step t+1 around

• At the last step the highest scoring configuration is
chosen as the parse

31

Scoring Functions for Transition-Based Parsers

• In greedy transition-based parsing the current action can
be chosen by training a classifier:

• A(x) is the set of admissible actions

• c is the current configuration

• w is the input

• P is the scoring function with parameters

• Feature-based scoring function:

• Features can be all sorts of features from the input buffer, stack, 
and already created arcs

32

Neural Scoring Function
• Chen and Manning (2014) feed forward network features:

• the top three words on the stack, and the first three words on the
buffer;

• the first and second leftmost and rightmost children (dependents)
of the top two words on the stack;

• the leftmost and right most grandchildren of the top two words on
the stack;

• embeddings of the part-of-speech tags of these words

• Feed forward network:

• Cubic elementwise activation function

33

Learning to Parse
• Mismatch between the supervision, the dependency

trees, and the classifier’s prediction space (set of parsing
actions)

• Create new training data by converting parse trees into
action sequences (often a deterministic algorithm)

• Alternatively, derive supervision directly from the parser’s
performance

34

Oracle-Based Training
• Transition system: action sequence ⟼ dependency tree

• Oracle: dependency tree ⟼ action sequence

• Oracle has to choose between multiple derivations in

case of spurious ambiguity

• Convert dependency treebank to set of oracle action

sequences

• Train transition based parser with:

• A(i) is length of the action sequence

• Beam search: sequence score is obtained by summing

action losses
35

log-likelihood loss

Global Objective
• Objective is locally-normalized

• Training on individual actions can be sub-optimal with
respect to the global performance (label bias problem)

• Example:

• Configuration appears 100 times in training data oracle action a1 is

used in 51 cases and a2 in 49 cases. a1 results in a cascading
error whereas a2 results in a single error

• Local objective function prefers a1, but choosing a2 minimizes the
overall number of errors

• Globally-normalized conditional likelihood:

 Set of all possible action sequences

36

Global Objective (cont.)

• Denominator can be approximated using Beam search:

 Ak is an action sequence on a beam of size K

• Resulting in the loss function:

37

Dependency Parsing on Penn Treebank

38

http://nlpprogress.com/english/dependency_parsing.html

http://nlpprogress.com/english/dependency_parsing.html

Applications - Digital Humanities Research
• Searching for pairs of words which might not be adjacent

• Search Google n-grams for: write → code

• Results: write some code, write good code, write all the code, etc.

• Plot use of this dependency arc over time

39

Applications - Relation Extraction
• Relation extraction of chapter 17

• Identify pairs of entities with relations to each other

• Example authorship:

• Paris can often be identified by consistent chains of
dependency relations

• Dependency parsing can help finding new instances of a
relation based of other instances of the same type

40

Applications - Question Answering
• Dependency parsing can improve question answering

• Example query:

• Sentence in corpus:

• In the dependency parses there is an edge from produce to
Wisconsin in both the question and the potential answer

• Likelihood is increased that this span of text is relevant for
the answer

41

Applications - Sentiment Analysis
• Is sentence positive or negative?

• Polarity can be reversed by negation

• Through dependency parsing we can track the sentiment
polarity to better identify the overall polarity

42

Questions?
Thank you for listening

