Dependency Parsing

Chapter 11

Felix Dietrich 2020/06/19

Dependency Grammar

* Motivated by lexicalized context-free grammars
* Jries to improve attachment ambiguities
* More light-weight structure
* Universal Dependencies project
 More than 100 dependency treebanks for more than
60 languages

Dependency parse

S(scratch)

NP (cats) VP (scratch)
— -

DT NNS VB NP(people) PP(with)
| | | ! —

The cats scratch NNS IN NP(claws)

| l |
people with — NNS mm\,mm

Clalws The cats scratch people with claws

(a) lexicalized constituency parse (b) unlabeled dependency tree

Dependency Grammar (cont.)

* Relationships modeled as directed graph
(dependency graph)
* \ertices are the words and a special root vertex
* Edge (i, j) from head : to dependent
 Describes syntactic dependencies
» Can be derived from a lexicalized constituency parse
* Exactly one incoming edge for each word (root has no
incoming edge)

« Properties of the dependency graph — — |/~ O\ —.
° Weakly connected The cats scratch people with claws
e No Cycles (b) unlabeled dependency tree

* Spanning tree if directed edges are
replaced by undirected edges

3

Heads and Dependents

How to choose the head? (possible criteria)

 Head sets syntactic category of the construction
 E.g. Nouns as heads of noun phrases, verbs are heads of verb
phrases

 Modifier (dependent) may be optional while head is
mandatory
* E.qQ. cats scratch people with claws, subtrees cats scratch and cats scratch
people are grammatical sentences, but with claws is not

 Head determines the morphological form of the modifier
 E.g.Inlanguages with gender agreements, the gender of the noun
determines the gender of the adjectives and determiners

* Edges should first connect content words, and then connect
function words

Heads and Dependents (cont.)

* Relationships are modeled as asymmetric
* Not all relations are asymmetric

Example: Coordination (symmetric)

Abigail and Max like kimchi with coordinated noun phrase Abigail
and Max

How to choose the heads in the coordinated noun phrase?
Choosing Abigail or Max would be arbitrary

Choosing and goes against the principle of linking content words

first
Universal Dependencies arbitrarily chooses the left-most item as

head and uses of conj (=conjoined) and cc (=coordinating
conjunction) labels (ro0)

Y

Abigail and Max like kimchi but not jook
)

Labeled Dependencies

* Labels of edges indicate the nature of the syntactic
relations

 What are the children of like? Who likes what??
* Abigail and Max is nsubj (=noun subject) of verb like
* kimchi but not jook is obj (=object) from verb like
* Negation not is advmod (=adverbial modifier) on the

noun jook
root
ot
\
\ 4

Abigail and Max like kimchi but not jook

Another Example Dependency Parse

punct
(conj)
root :
(D
(compound] [CompounJ
| I - .
I know New York pizza. and this is not it I

Figure 11.3: A labeled dependency parse from the English UD Treebank (reviews-361348-
0006)

Example Japanese Dependency Parse

Short Unit Word (SUW) I

(advcl)
m lOb_] unct
(FE L R By %) (HLE)
PROPN PUNCT PROPN NOUN ADP VERB PUNCT VERB NOUN ADP NOUN ADP VERB
China Beijing univ. -IOBJ study return after -IOBJ twins -OBJ birth
abroad to Japan
Long Unit Word (LUW) I
advcl @
1obj
[me \ f

(FE - Jbsk 0) (RE&) B¥ %) (HhE)

PROPN ADP VERB PUNCT NOUN ADP NOUN ADP VERB

Peking Univ. -IOBJ study afterreturn -IOBJ twins -OBJ birth

in China abroad to Japan
advcl
. lOb_]
Labels are not that important &
in Japanese bunsetsu parsing _
HE - BRI IR E# I (BT %)
PROPN VERB NOUN NOUN VERB
Peking Univ. in China study abroad after return to Japan twins birth
-I0OBJ -IOBJ -OBJ

She studied in Peking University, and delivered twins when she returned to Japan.

8

Source: Asahara, Masayuki, et al. "Universal
Dependencies Version 2 for Japanese."

Dependency Subtrees and Constituents

* Dependency trees hides information present of CFG parse
* Often no meaningful difference between analyses

 Dependency parses can be flat:
* E.g. Abigail was reluctantly giving Max kimchi with head giving

VP
/’/’\
VP VP PP
B
V NP PP PP VP PP with a fork
| | — T~
ate dinner on the table with a fork Y N|P on the table
(a) Flat ate dinner
(b) Chomsky adjunction
VP

_
VP PP PP
/\
h | ithaf
\|/ N|P on the table with a fork KR =N

ate dinner ate dinner on the table with a fork
(c) Two-level (PTB-style) (d) Dependency representation

Figure 11.4: The three different CFG analyses of this verb phrase all correspond to a single
dependency structure.

9

Projectivity

Definition (Projectivity). An edge from i to j is projective iff all k
between 1 and j are descendants of 1. A dependency parse 1s
projective iff all its edges are projective.

 Dependency parses derived from lexicalized CFG parses
are projective = restricted class of spanning trees

* Syntactic constituents are continues spans

Projective Example Non-Projective Example
@ @ lacl:relcl |

\acl.1ec)
‘
Y \4

Abigail and Max like kimchi but not jook Lucia ate a

-

cop

izza yesterday which was vegetarian

o

10

Projectivity (cont.)

% non-projective edges % non-projective sentences

Czech 1.86% 22.42%
Enghsh 0.390/0 7. 630/0
German 2.33% 28.19%

* The frequency of projectivity is language dependent
* Projectivity has algorithmic consequences
* [ransition-based parsing
o Simple/efficient but mostly allows for projectivity
» Graph-based parsing
 Complex/inefficient but also allows non-projectivity

11

Graph-Based Dependency Parsing

+ Dependency graph: y = {(i — j)}

* Relation r

 Head word ¢ € {1,2,...,M,ROOT}
» Modifierj € {1,2,..., M}

* M is length of input |w|

- Scoring function: ¥ (y, w; 6)

Optimal parse: 9y = argmax ¥V (y, w;)
yey(w)

« JV(w)is the set of valid dependency parses on input w
|V (w)| is exponential in the length of the input

12

Arc-Factored Assumption

« Decompose the exponential search space into a sum of

local feature vectors.
* This assumes that the score is independent of other

edges

 Arc-factored:

U(y, w;0) = Z V(i = j,w;0)
z-)gEy

13

Higher-Order Dependency Parsing

* Relax arc-factored decomposition to allow higher-order

dependencies sibling
First order K?/ /9 randparent
Second order h s m

~—32 ™ /a a

Third order g h s m ht s m
U(y,w;0) Z wparent 2 —>]7'w 0)
z—)jEy

+ Z wgrandparent(i = j, k7', w; 0)

Efficient algorithms exist for by

1st .2nd,. and 3rdlorder . + Z wsibling(i Ty i s 1w 9).
projective parsing, but it is y

NP-hard to do higher-order i—75€Y

non-projective parsing 573

14

Projective Dependency Parsing

Lexicalized CFG parsing algorithms can be applied
directly to get a projective dependency parse

Lower bound for scoring the edges O(M?2R)

There are cubic time algorithms for lexicalized constituent
parsing

Hence, arc-factored projective dependency parsing is in
cubic time in the length of the input

Second-order projective dependency parsing can also be
performed in cubic time

Third-order projective dependency parsing can be
performed in O(M*)

15

Non-Projective Dependency Parsing

 Precompute scores for the edges
 Find maximum directed spanning tree to maximize the
total score (Chu-Liu-Edmonds algorithm)

* Chu-Liu-Edmonds .,
complexity O(M3R f\ F \\
Can be reduced }
to O(M?N) by storing
the edge scores in a W
Fibonacci heap R

Chu-Liu-Edmonds algorithm
Jurafsky Figure 15.14

16

Computing Scores for Dependency Arcs

Linear (i = j,w;0) =0 f(i = j,w)
Neural Y(i = j,w;0) = Feedforward ([u,, ; Uy,]; 0)

Generative V(i = j,w;0) =logp(w;,r | w;).

17

Linear Feature-Based Arc Scores
Linear (i = j,w;0)=0-f(i > j,w)

 Same features f possible as in sequence labeling and

discriminative constituency parsing including:
the length and direction of the arc;
the words w; and wj; linked by the dependency relation;
the neighbors of the dependency arc,
Wi—1, Wi41, Wj—1, Wj41,
* the prefixes, suffixes, and part-of-speech of these neighbor words
* Bilexical features (e.g. sushi — chopsticks)
* Useful but rare, backing off can be helpful
f (3 — 5, we eat sushi with chopsticks) = (sushi — chopsticks,

sushi — NNS,
NN — chopsticks,
NNS — NN).

 Many more features are possible

18

Neural Arc Scores

e (Given vector representation x; for each word w;

V(i — j,w;) =FeedForward([x;; x;]; 6)

» Kiperwasser and Goldberg (2016) feed forward network:

z =g(O[xs; ;] + b))
(i 5 §) =Brz + Y

©,. is a matrix, Bris a vector, each b, is a scalar, g is an elementwise
tanh activation

* I;can be a word embedding or a vector incorporating
context through a BiLSTM layer on the input word
embeddings (Kiperwasser and Goldberg, 2016)

19

Kiperwasser and Goldberg (2016)

* No handcrafted lexical features
» Context captured through BiLSTM layer

(0).4
LSTM? LSTM? LSTM?® LSTMP LSTM?

Kiperwasser and Goldberg (2016)

20

Probabilistic Arc Scores

Generative (i AN j,w;0) = logp(’wj,T | w;)

* Unlabeled parse for: we eat sushi with rice

y ={(ROOT, 2),(2,1),(2,3),(3,5),(5,4)}
logp(w|y)= Y logp(w; | w;)

(t—j)ey
= log p(eat | ROOT) + log p(we | eat) + log p(sushi | eat)
+ log p(rice | sushi) + log p(with | rice).

* Used in combination with expectation-maximization for
unsupervised dependency parsing

21

Learning

 We can apply similar learning algorithms to those used in
seguence labeling

 We can update a feature-based arc scores perceptron
with: gy =argmax0 - f(w,y’)
y' €Y (w)

argmax can be computed as previously described (Chu-Liu-
Edmonds algorithm)

22

Transition-Based Dependency Parsing
. Graph -based dependency parsing

Offers exact inference (chooses always best-scoring parse)

e Scoring is restricted to individual arcs (first-order features) for non-
projective parsing

* Conflict: some types of attachment require second-order features

 Goes against intuitions of human language processing (sequential
reading and listening)

* Runs relatively slow, running in cubic time in the length of the input
* [ransition-based dependency parsing tries to solve those
ISsues

e Sequential sentence processing

* Build-up and update the parsing structure through a simple
seguence of actions

* Incorporate higher-order features by looking at this structure
* Linear time complexity

* Derivation: the sequence of actions producing the parse
* Multiple derivations possible = spurious ambiguity

23

Transition Systems for Dependency Parsing

* Transition system consists of parser configuration and a
set of transition actions manipulating the configuration
» Configuration C = (0,3, A)
e o Is the stack
* 3 Is the input buffer
* A is the set of created arcs
* |nitial configuration:

Cinitial = ([ROOT], w, &)
* Accepting configuration:
C'accep’c — ([ROOT], <, A)

1

Spanning tree over the input

24

Transition System: Arc-Standard

* Closely related to shift-reduce, and to the LR algorithm
used to parse programming languages

e Actions
» SHIFT (precond.: input buffer not empty)
(0,1|8,A) = (o3, 5, A)

 ARC-LEFT (precond.: top of stack is not ROOT)
(o2, 418, A) = (0,j|B, A® j —)

+ ARC-RIGHT
(o3, 718, A) = (0,i|B, A® i — j)

- Always results in a spanning tree

25

Transition System: Arc-Standard (Example)

* Actions are provided
* Notice the positions of ARC-RIGHT actions

o B action arc added to A
1. [ROOT] they like bagels with lox SHIFT
2. |[ROOT, they| like bagels with lox ARC-LEFT (they < like)
3. [ROOT] like bagels with lox SHIFT
4. [ROOT, like] bagels with lox SHIFT
5. |ROOT, like, bagels| with lox SHIFT
6. [ROOT,like, bagels, with| lox ARC-LEFT (with < lox)
7. |ROOT, like, bagels] lox ARC-RIGHT (bagels — lox)
8. [ROOT, like] bagels ARC-RIGHT (like — bagels)
9. |ROOT] like ARC-RIGHT (ROOT — like)
10. [ROOT] %) DONE

Table 11.2: Arc-standard derivation of the unlabeled dependency parse for the input they
like bagels with lox.

26

Transition System: Arc-Eager

* Problem with arc-standard: we are not eager to apply
ARC-RIGHT since right-branching is common in English

* We tend to SHIFT everything onto the stack and assign arcs later
to not remove words which still have dependents

 Arc-eager dependency parsing will use the ARC-RIGHT
action more eagerly

e Modified ARC-RIGHT action:

* Pushes the modifier onto the stack rather then removing it

* Additional ARC-LEFT precondition:

* [t can not be applied when the top of stack element already has a
parent in A

 New REDUCE action:

 Can remove elements from top of stack if it has a parentin A

(o]i, 418, A) = (0,i|B, A® i = j)

27

Transition System: Arc-Eager (Example)

o B action arc added to A
1. [ROOT] they like bagels with lox SHIFT
2. [ROOT, they] like bagels with lox ARC-LEFT (they < like)
3. [ROOT] like bagels with lox ARC-RIGHT (ROOT — like)
4. [ROOT, like] bagels with lox ARC-RIGHT (like — bagels)
5. |ROOT, like, bagels| with lox SHIFT
6. [ROOT, like, bagels, with] lox ARC-LEFT (with < lox)
7. |ROOT, like, bagels] lox ARC-RIGHT (bagels — lox)
8. [ROOT, like, bagels, lox] @ REDUCE
9. [ROOT, like, bagels] %) REDUCE
10. [ROOT, like] %) REDUCE
11. [ROOT] %) DONE

Table 11.3: Arc-eager derivation of the unlabeled dependency parse for the input they like
bagels with lox.

28

Projectivity

* Arc-standard and arc-eager transition systems produce
projective dependency trees

* Non-projective transition systems include actions which
create arcs to words that are second or third in the stack

 Pseudo-projective dependency parsing
* First do the projective dependency parse
* Apply graph transformation technigues to produce a
non-projective parse

29

Beam Search

e “greedy” transition-based parsing tries to do the best
action at each configuration
| eads to search errors
* Early wrong decisions propagate and can lock the
parser in a poor derivation

« Beam search tries to correct search errors by keeping

multiple partially-complete hypotheses around, called a
beam

t=1 t=2 t=3 t=4 t=5

[ROOT] SHIFT [ROOT, they] | ARC-RIGHT | [ROOT, they]
they can fish can fish fish

[RooT, can }

fish

l [RoOT, can] | ARC-RIGHT l [RooT]
%))

ARcC-RIGHT

/

ARC-LEFT

ARC-LEFT

1%}

l [ROOT, fish]] l [RoOT] }

ARC-RIGHT 2

Figure 11.7: Beam search for unlabeled dependency parsing, with beam size K = 2. The
arc lists for each configuration are not shown, but can be computed from the transitions.

30

Beam Search (cont.)

* At step t of the derivation there is a set of k hypotheses
with score s{*) and a set of dependency arcs 4%®

k k k
1O = (o9, A

» Keep the k best scoring configurations transitioned from

step t at step t+1 around
* At the last step the highest scoring configuration is

chosen as the parse

t=3 t=4 t=5

[ROOT] SHIFT [ROOT, they] | ARC-RIGHT | [ROOT, they] [ROOT, can] | ARC-RIGHT | [ROOT]
- - ARC-RIGHT o - o

they can fish can fish fish /

[RooOT, can] }
ARC-LEFT

fish

%)

l [ROOT, fish]]

T l [ROOT]]

ARC-LEFT

ARC-RIGHT

Figure 11.7: Beam search for unlabeled dependency parsing, with beam size K = 2. The
arc lists for each configuration are not shown, but can be computed from the transitions.

31

Scoring Functions for Transition-Based Parsers

* |n greedy transition-based parsing the current action can
be chosen by training a classifier:

a = argmax ¥(a, c, w; 0)
acA(c)

A(c) is the set of admissible actions

c is the current configuration

w IS the input

¥ is the scoring function with parameters @

* Feature-based scoring function:
U(a,c,w) =0 - f(a,c,w)

* Features f can be all sorts of features from the input buffer, stack,
and already created arcs

32

Neural Scoring Function

 Chen and Manning (2014) feed forward network features:
* the top three words on the stack, and the first three words on the

buffer;
* the first and second leftmost and rightmost children (dependents)

of the top two words on the stack;
* the leftmost and right most grandchildren of the top two words on

the stack;
 embeddings of the part-of-speech tags of these words

c=(o,8,A)

T(C, W) =[Vuw,, s Vty, Vwoys Vtoys Vwey s Vtoss Vwg, s Vtg, > Vwg, s Vtg s - - -]

e Feed forward network:

z =g(0F %) g (c, w))
¥(a,c,w; 0) =0FY) 2

» Cubic elementwise activation function g(z) = z°

33

Learning to Parse

 Mismatch between the supervision, the dependency

trees, and the classifier’s prediction space (set of parsing
actions)

* Create new training data by converting parse trees into
action sequences (often a deterministic algorithm)

* Alternatively, derive supervision directly from the parser’s
performance

34

Oracle-Based Training

e [ransition system: action sequence — dependency tree

« Oracle: dependency tree — action sequence

* Oracle has to choose between multiple derivations in
case of spurious ambiguity

 Convert dependency treebank to set of oracle action
sequences {AW}N

* [rain transition based parser with:
exp ¥(a, c, w;)

p(a | va) :Z

/ v ,7) 70 1 i
@/ €A(c) %P (.)(“ ¢, w; 6) log-likelihood loss
N |AY]

o :argmaxz Z logp(af) | cﬁi), w)
0 =1 t=1
* |[A| is length of the action sequence A()
* Beam search: sequence score is obtained by summing

action losses i

Global Objective

N |A()|

 Objective 6 =argmax} 3 logp(e D1 w) is locally-normalized

* Training on individual actions can be sub-optimal with
respect to the global performance (label bias problem)

 Example:

e Configuration appears 100 times in training data oracle action a1 is
used in 51 cases and a2 in 49 cases. a1 results in a cascading
error whereas a9 results in a single error

* Local objective function prefers a1, but choosing ag minimizes the
overall number of errors

* Globally-normalized conditional likelihood:

. |AG)| (2) .(2)
p(A(Z) | w; 0) = eXP D -1 \Ij(at| ¢ W)
ZA’EA(w) €Xp Zt 1 \Ij(atv Ct7 w)

Set of all possible action sequences A(w)

36

Global Objective (cont.)

exp 1 (0,), w)

p(AY | w;8) = ¥ :
ZA’EA(w) €Xp Zt:l \Ij(aw Ct» w)

 Denominator can be approximated using Beam search:

| A’ |AR)|
Z eXpZ\I!(a,;,ct, Zexp Z U (at ,ct LW
A’eA(w) t=1

A®) is an action sequence on a beam of size K

* Resulting in the loss function:

|A(z) |A(k)

Z\I!al(f),ct , W —|—logZepo \I!at ,ct , W

37

Dependency Parsing on Penn Treebank

Model POS UAS LAS Paper / Source Code
Label Attention Layer + 97.3 | 97.42 | 96.26 | Rethinking Self- Official
HPSG + XLNet (Mrini et Attention: Towards

al., 2019) Interpretability for

Neural Parsing

BIST transition-based 97.3 93.9 91.9 | Simple and Accurate | Official
parser (Kiperwasser and Dependency Parsing
Goldberg, 2016) Using Bidirectional

LSTM Feature
Representations

BIST graph-based parser 97.3 93.1 91.0 | Simple and Accurate | Official
(Kiperwasser and Dependency Parsing

Goldberg, 2016) Using Bidirectional
LSTM Feature

Representations

http://nlpprogress.com/english/dependency parsing.html

38

http://nlpprogress.com/english/dependency_parsing.html

Applications - Digital Humanities Research

Searching for pairs of words which might not be adjacent
Search Google n-grams for: write — code

* Results: write some code, write good code, write all the code, etc.

0.0000600% -
0.0000500% +
0.0000400% -
0.0000300% +
0.0000200% +
0.0000100% -+

0.0000000% T i J

Plot use of this dependency arc over time

Wrl

“J‘I{ Y

Wi

/

1950 1955 1960 1965 1970 1

975 1980 1985 1990 1995 2000

‘vl\‘ | "

vrites coc

ling=>code
te code
ting code
tten code

le

Figure 11.8: Google n-grams results for the bigram write code and the dependency arc write

=> code (and their morphological variants)

39

Applications - Relation Extraction

* Relation extraction of chapter 17

 |dentify pairs of entities with relations to each other
* Example authorship:

(MELVILLE, MOBY-DICK)

(TOLSTOY, WAR AND PEACE)

(MARQUEZ, 100 YEARS OF SOLITUDE)
(SHAKESPEARE, A MIDSUMMER NIGHT’S DREAM)

* Paris can often be identified by consistent chains of
dependency relations

 Dependency parsing can help finding new instances of a
relation based of other instances of the same type

40

Applications - Question Answering

 Dependency parsing can improve question answering

 Example query:

(11.1) What percentage of the nation’s cheese does Wisconsin produce?

* Sentence in corpus:

(11.2) In Wisconsin, where farmers produce 28% of the nation’s cheese, ...

* In the dependency parses there is an edge from produce to

Wisconsin in both the question and the potential answer
* Likelihood is increased that this span of text is relevant for
the answer

41

Applications - Sentiment Analysis

* |s sentence positive or negative?
» Polarity can be reversed by negation

(11.3) There is no reason at all to believe the polluters will suddenly become reasonable.

* Through dependency parsing we can track the sentiment
polarity to better identify the overall polarity

42

Questions?

Thank you for listening

