

# Development and Analysis of Strategies for the Card Game "The Game"

Bachelor-Kolloquium

**Felix Dietrich** 

October 10, 2019



Tur Uhranturm

# The Game (by Steffen Benndorf)

Initial deck:  $D = \{2, 3, ..., 99\}$ 

Hand cards: 8

Take turns until no cards can be played any more

Backwards trick  $\pm 10$ 

Play at least 2 cards a turn before drawing

Goal: Lay all cards (difficult)

 $\Rightarrow$  Results < 10 are excellent



# The Game (by Steffen Benndorf)

Initial deck:  $D = \{2, 3, ..., 99\}$ 

Hand cards: 8

Take turns until no cards can be played any more

Backwards trick  $\pm 10$ 

Play at least 2 cards a turn before drawing

Goal: Lay all cards (difficult)

 $\Rightarrow$  Results < 10 are excellent







# Motivation

- Simple game but seems difficult to win (no obvious tactics).
- What is the best or a good strategy for "The Game"?
- How do these strategies perform?
- $\Rightarrow$  General question: How to win "The Game"?

# Approach Used

- **Positional evaluation** similar to chess.
- Idea: Find the best valued position out of all positions in the game tree.
- Strategy is then defined by a value function.
- My game tree covers all positions at depth 2 (No special search algorithm is used).
- The win rate of a strategy is then approximated by simulating a sample of games, instead of theoretically calculating it (difficult to do).



Image source: https://www.sites.google.com/site/qgchess/chess-algorithms **Felix Dietrich** | Development and Analysis of Strategies for the Card Game "The Game"

# Strategy (Positional Evaluation)

Full sample:  $X = (X_1, \ldots, X_n)$ 

**Procedure 1** Simulate a random game

Input:  $v : S \to \mathbb{R}$ 

**Output:** Sample of cards remaining at the end of the game  $X_i$ 

 $s \leftarrow$  choose uniformly at random from  $S_{init}$ 

while  $T_{t_{min}}(s) 
eq \emptyset$  do

 $m{s} \leftarrow \operatorname{argmax}_{m{s}' \in \mathcal{T}_{t_{min}}(m{s})} \{m{v}(m{s}')\}$ 

 $s \leftarrow$  refill hand from deck for s

#### end while

 $s \leftarrow$  play longest possible move sequence for sreturn  $|C \setminus L(s)|$ 

$$m(X) = \frac{1}{n} \sum_{i \in [n]} X_i$$
  $w(X) = \frac{1}{n} |\{i \in [n] \mid X_i = 0\}|$ 

@Chair of Algorithms and Complexity@Department of InformaticsTechnical University of Munich



# **Perceived Capacity**

**Perceived capacity function:** 

$$c_{
ho}(s,
ho) = egin{cases} c^{\uparrow} - 
ho_c(s,
ho), & 
ho \in \mathcal{P}^{\uparrow} \ 
ho_c(s,
ho) - c^{\downarrow}, & 
ho \in \mathcal{P}^{\downarrow}. \end{cases}$$

Value function:

$$v(s) = \sum_{
ho \in P} c_{
ho}(s,
ho)$$
,





# Perceived Capacity - Results

Sample size  $n = 1\,000\,000$ .

Games won: 4.0%

Cards remaining: 17.1

 $\Rightarrow$  Very simple strategy already relatively high chance of winning



@Chair of Algorithms and Complexity@Department of InformaticsTechnical University of Munich



# **Real Capacity**

#### **Real capacity function:**

 $c_r(s, p) = |\{c \in C \setminus L(s) \mid playable(s, c, p)\}|,$ 

Value function:

$$V(s) = \sum_{p \in P} c_r(s, p),$$





# **Real Capacity - Results**

Sample size  $n = 1\,000\,000$ . Games won: 3.4% (vs. perceived capacity 4.0%) Cards remaining: 17.9 (vs. perceived capacity 17.1)

Why is this worse than the perceived capacity?  $\Rightarrow$  Probably because of skipping over important cards.





# Weighting Capacities

Idea: Change growth rate of the piles by weighting the capacities differently.



Figure: Average course of the pile cards for won games using the perceived capacity strategy.



# Weighting Capacities

Weights  $\omega: \mathbf{P} \to \mathbb{R}^+$  multiplied with the capacities.

Value function:

$$\mathbf{v}(\mathbf{s}) = \sum_{\mathbf{p}\in\mathbf{P}} \omega(\mathbf{p}) \cdot \mathbf{c}(\mathbf{s},\mathbf{p}),$$

with either  $c = c_p$  or  $c = c_r$ .



# Weighting Capacities - Results

Sample size  $n = 1\,000\,000$ .

#### Weighted perceived capacity:

Good weights:  $\omega(1^{\uparrow}) = 0.675 = \omega(1^{\downarrow}), \omega(2^{\uparrow}) = 1 = \omega(2^{\downarrow})$ Games won: 5.2% Cards remaining: 15.4

#### Weighted real capacity:

Good weights:  $\omega(1^{\uparrow}) = 0.6 = \omega(1^{\downarrow}), \omega(2^{\uparrow}) = 1 = \omega(2^{\downarrow})$ Games won: 6.8% Cards remaining: 14.9

Why does weighting increase the chance of winning?

- $\Rightarrow$  Better distribution of cards might lead to a lower risk of large steps. Why is the real capacity suddenly superior?
- $\Rightarrow$  Better distribution of gaps between the cards
- $\Rightarrow$  Better decisions possible when skipping cards

Felix Dietrich | Development and Analysis of Strategies for the Card Game "The Game"

# Penalize Playability

Why are large steps bad? Why is skipping over important cards bad?  $\Rightarrow$  Playability of remaining cards decreases.

#### **Penalty function:**

$$f: \{0, 1, \ldots, p_{\uparrow} + p_{\downarrow}\} 
ightarrow \mathbb{R}_0^+$$

with  $f(p_{\#}(s, c))$  as penalty for a card c and  $p_{\#}(s, c) = |\{p \in P \mid playable(s, c, p)\}|.$ 

Value function:

$$v(s) = -\sum_{c \in C \setminus L(s)} f(
ho_{\#}(s', c)),$$

Note that this value function is negative to minimize the penalty.



# Penalize Playability - Results

Good penalty function:  $f(x) = e^{-1.5x}$ Games won: 9.4% Cards remaining: 13.2

Value function can give up on a pile for a card as opposed to keeping as many cards playable on as many piles as possible in the capacity strategies.



# Penalty with Recoverability

#### Simplified penalty function:

$$\pi: S \times P \times C \rightarrow [1, \ldots \infty)$$

Value function:

$$v(s) = -\sum_{c \in C \setminus L(s)} \prod_{p \in P} \pi(s, p, c),$$

**Example penalty function:** 

$$\pi(s, c, p) = \begin{cases} 1 & \text{if } playable(s, c, p) \\ \alpha & \text{otw.} \end{cases}$$

Equivalent win rate and cards remaining with  $\alpha$  = 3.5 to other penalty function.



# **Recovery Using Distance**

#### Penalty function:

$$\pi(s, c, p) = \begin{cases} 1 & \text{if } playable(s, c, p) \\ \alpha - \beta \cdot e^{\gamma \cdot (|p_c(s, p) - c| - 1)} & \text{otw.}, \end{cases}$$

#### **Results:**

With  $\alpha = 3.5$ ,  $\beta = 1$ , and  $\gamma = 0.03$  (there are surely better choices). Win rate: 12.7% (9.4% without recovery term) Cards remaining: 11.2 (13.2 without recovery term)



# Recoverability Estimation Using Single Bridges Penalty function:

$$\pi(s, c, p) = \begin{cases} 1 & \text{if } playable(s, c, p) \\ 1 + (\alpha - 1) \cdot (1 - \rho(s, c, p)) & \text{otw.}, \end{cases}$$

 $\rho(s, c, p)$  should be the chance of recovering card *c* onto pile *p*.  $\Rightarrow$  Difficult to calculate, therefore single bridges estimation.

#### Single bridges estimation:

 $\rho(s, c, p)$  is the probability of being able to recover the card using a single bridge next turn after drawing 2 cards.

$$ho(s,c,p)=P( ext{drawn})=rac{s_b}{|D|}+rac{d_b}{|D|}\cdotrac{s_b+1}{|D|-1}+rac{|D|-s_b-d_b}{|D|}\cdotrac{s_b}{|D|-1}.$$

# Recovery with Single Bridges - Results

#### **Results:**

Win rate: 10.8% (9.4% without recovery term) Cards remaining: 12.8 (13.2 without recovery term)  $\Rightarrow$  Underestimation of the recoverability probability.

#### Amplified recoverability term:

$$\pi(\boldsymbol{s}, \boldsymbol{c}, \boldsymbol{p}) = \begin{cases} 1 & \text{if } \boldsymbol{playable}(\boldsymbol{s}, \boldsymbol{c}, \boldsymbol{p}) \\ 1 + (\alpha - 1) \cdot (1 - \rho(\boldsymbol{s}, \boldsymbol{c}, \boldsymbol{p})^{\lambda}) & \text{otw.,} \end{cases}$$

#### **Amplified results:**

Using  $\lambda = 0.2$ . Win rate: 12.2% Cards remaining: 13.0

 $\Rightarrow$  Almost as good as with the distance recovery term (win rate 12.7%).



# Recoverability with Fallback

#### Penalty function:

$$\pi(s, c, p) = \begin{cases} 1 & \text{if } playable(s, c, p) \\ \alpha - \beta \cdot e^{\gamma \cdot (|p_c(s,p)-c|-1)} & \text{if } \neg playable(s, c, p) \\ \wedge |p_c(s,p) - c| > b \\ 1 + (\alpha - 1) \cdot (1 - \rho(s, c, p)^{\lambda}) & \text{otw.} \end{cases}$$

#### **Results:**

 $\alpha$  = 3.5, magnitude  $\beta$  = 1, falloff  $\gamma$  = 0.03, and power  $\lambda$  = 0.2. Win rate: 13.1% Cards remaining: 12.4

### Progression

| Strategy Name                        | Win Rate | Cards<br>Remaining | Backwards Trick<br>Usage of Winners |
|--------------------------------------|----------|--------------------|-------------------------------------|
| Perceived Capacity                   | 4.0%     | 17.1               | 18.1                                |
| Real Capacity                        | 3.4%     | 17.9               | 16.3                                |
| Weighted Perceived Capacity          | 5.2%     | 15.4               | 18.0                                |
| Weighted Real Capacity               | 6.8%     | 14.9               | 15.7                                |
| Penalize Playability ( $e^{-1.5x}$ ) | 9.4%     | 13.2               | 15.1                                |
| Recovery Using Distance              | 12.7%    | 11.2               | 15.9                                |
| Single Bridges                       | 10.8%    | 12.8               | 15.9                                |
| Single Bridges Amplified             | 12.2%    | 13.0               | 16.6                                |
| Recovery with Fallback               | 13.1%    | 12.4               | 16.7                                |



### Deeper Search Depth

#### Extended depth value function:

| $V_d(s) =$ | max                         | _{ <i>V</i> ( <i>s</i> ')} |
|------------|-----------------------------|----------------------------|
|            | $s' \in \bigcup I_i(s)$     | 5)                         |
|            | <i>i</i> ∈{0,1,, <i>d</i> } |                            |

| Stratagy Nama                        | Win Rate | Win Rate     | Multiplicative |
|--------------------------------------|----------|--------------|----------------|
| Strategy Name                        | d = 0    | <i>d</i> = 1 | Increase       |
| Perceived Capacity                   | 4.0%     | 4.0%         | 0.6%           |
| Real Capacity                        | 3.4%     | 3.4%         | 0.4%           |
| Weighted Perceived Capacity          | 5.2%     | 5.3%         | 2.3%           |
| Weighted Real Capacity               | 6.8%     | 6.8%         | 1.2%           |
| Penalize Playability ( $e^{-1.5x}$ ) | 9.4%     | 16.2%        | 73%            |
| Recovery Using Distance              | 12.7%    | 18.8%        | 47%            |
| Single Bridges                       | 10.8%    | 18.2%        | 67%            |
| Single Bridges Amplified             | 12.2%    | 22.6%        | 85%            |
| Recovery with Fallback               | 13.1%    | 23.4%        | 80%            |

Felix Dietrich | Development and Analysis of Strategies for the Card Game "The Game"



### Deeper Search Depth

**Results for** d = 2: Small sample size n = 10000.

Win rate: 29.7%

Cards remaining: 7.1

6 988 out of 10 000 reached the point where less than 10 cards were remaining.

 $\Rightarrow$  This strategy gives on average an excellent result.

# Possible Improvements (Outlook)

- Find better parameters.
- Search algorithm filtering only relevant positions.
- $\Rightarrow$  Extended search depth with larger sample size.
  - Improve the recovery term accuracy.
- $\Rightarrow$  Amplified double bridges estimation?

# Possible Improvements (Outlook)

- Find better parameters.
- Search algorithm filtering only relevant positions.
- $\Rightarrow$  Extended search depth with larger sample size.
  - Improve the recovery term accuracy.
- $\Rightarrow$  Amplified double bridges estimation?

# Thank you!



# References I

Benndorf, S. (2012). Quixx. URL:

boardgamegeek.com/boardgame/131260/qwixx (visited on 09/12/2019).

- (2015). The Game. URL: boardgamegeek.com/boardgame/173090/game (visited on 09/12/2019).
- Birge, J. R. and F. Louveaux (2011). Introduction to stochastic programming. Springer Science & Business Media.
- Chess Algorithms QGChess (n.d.). URL:
  - http://www.sites.google.com/site/qgchess/chess-algorithms.
- Gabillon, V., M. Ghavamzadeh, and B. Scherrer (2013). "Approximate dynamic programming finally performs well in the game of Tetris". In: *Advances in neural information processing systems*, pp. 1754–1762.
- Haykin, S. S. et al. (2009). Neural networks and learning machines/Simon Haykin. New York: Prentice Hall,
- Knuth, D. E. and R. W. Moore (1975). "An analysis of alpha-beta pruning". In: Artificial intelligence 6.4, pp. 293–326.

# References II

- Ku, J. S. and M. Rudoy (n.d.). "Complexity of Benndorf's "The Game"". In: ().
- Schafer, R. W. et al. (2011). "What is a Savitzky-Golay filter". In: IEEE Signal processing magazine 28.4, pp. 111–117.
- Shannon, C. E. (1950). "XXII. Programming a computer for playing chess". In: *The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science* 41.314, pp. 256–275.
- Smith, D. K. (2007). "Dynamic programming and board games: A survey".
   In: *European Journal of Operational Research* 176.3, pp. 1299–1318.