[

Technical University of Munich

School of Computation, Information and Technology
— Informatics —

Master’s Thesis in Informatics

Leveraging LLMs for Automated
Feedback Generation on Exercises

Felix Timotheus Johannes Dietrich

I

Technical University of Munich

School of Computation, Information and Technology
— Informatics —

Master’s Thesis in Informatics

Leveraging LLMs for Automated
Feedback Generation on Exercises

Nutzung von LLMs fir die automatische
Generierung von Feedback zu Ubungen

Author: Felix Timotheus Johannes Dietrich
Supervisor: Prof. Dr. Stephan Krusche
Advisor: Maximilian Soélch, M.Sc.

Submission Date: 15. September 2023

I confirm that this master’s thesis is my own work and I have documented

all sources and material used.

Munich, 15. September 2023 Felix Timotheus Johannes Dietrich

Abstract

Leveraging the capabilities of Large Language Models (LLMs) promises a
practical solution to the real-world challenge of giving personalized feedback
in text and programming exercises within large educational settings. This
research utilizes LLMs within Athena, a key part of the Artemis Learning
Management System (LMS). The objective is to improve the quality and
adaptability of automated feedback while directly supporting tutors in their
assessment tasks.

The core aim of this thesis is to enhance Artemis’s existing semi-automated
assessment system for text exercises, currently facilitated by CoFee [Ber22],
by introducing LLMs into the process. Concurrently, this work introduces
LLM-based automated feedback for programming exercises. Both initiatives
are supported within a newly established research and development environ-
ment, designed to streamline the future creation of automated assessment
approaches for Artemis within Athena.

The methodology employs a two-stage approach: first, LLMs are utilized
to generate automated feedback for text and programming exercises, followed
by a comprehensive evaluation focusing on accuracy, cost, and generation
times. Initial results affirm that this integrated approach is promising, espe-
cially for text exercises, aligning well with educational objectives and offering
substantial potential for future advances.

Zusammenfassung

Die Nutzung von Large Language Models (LLMs) bietet eine praktische
Losung fiir die reale Herausforderung, personalisiertes Feedback in Text-
und Programmieriibungen in grofien Bildungsumgebungen zu geben. Diese
Forschung integriert LLMs in Athena, einem Schliisselelement des Artemis
Learning Management Systems (LMS). Das Ziel ist, die Qualitét und Anpas-
sungsfahigkeit des automatisierten Feedbacks zu verbessern und gleichzeitig
Tutoren bei ihren Bewertungsaufgaben direkt zu unterstiitzen.

Der zentrale Fokus dieser Arbeit liegt darauf, das bestehende semi-auto-
matisierte Bewertungssystem von Artemis fiir Textaufgaben, derzeit durch
CoFee [Ber22| erleichtert, durch die Einfithrung von LLMs zu verbessern.
Parallel dazu fiihrt diese Arbeit LLM-basiertes automatisiertes Feedback fiir
Programmieraufgaben ein. Beide Initiativen werden in einer neu geschaffe-
nen Forschungs- und Entwicklungsumgebung unterstiitzt, die darauf abzielt,
die kiinftige Erstellung automatisierter Bewertungsansétze fiir Artemis in
Athena zu vereinfachen.

Die Methodik folgt einem zweistufigen Ansatz: Erstens werden LLMs
eingesetzt, um automatisiertes Feedback fiir Text- und Programmieraufga-
ben zu generieren; zweitens erfolgt eine umfassende Evaluierung, die sich auf
Genauigkeit, Kosten und Generierungszeiten konzentriert. Erste Ergebnisse
bestétigen, dass dieser integrierte Ansatz vielversprechend ist, insbesondere
fiir Textiibungen. Es passt gut zu den pddagogischen Zielen und bietet er-
hebliches Potenzial fiir zukiinftige Fortschritte.

Contents

1 Introduction

1.1
1.2
1.3
1.4

Problem
Motivation
Objectives
Outline.

2 Large Language Models

2.1
2.2
2.3

What are Large Language Models?
Evolution of Current LLMs
Real-World Application of LLMs
2.3.1 (Chat-)Completion Interface
2.3.2 Fine-Tuning LLMs
2.3.3 Basic Workflow: Format, Predict, Parse

3 Related Work

4 Requirements Analysis

4.1
4.2

4.3

4.4

Overview
Current System
4.2.1 Assessment of Text Exercises
4.2.2 Assessment of Programming Exercises
Proposed System
4.3.1 Functional Requirements
4.3.2 Non-Functional Requirements
System Models
4.4.1 Scenarios
4.4.2 Use Case Model
4.4.3 Analysis Object Model
4.4.4 Dynamic Model
4.4.5 User Interface

i

5 System Design

5.1 Overview
5.2 Design Goals
5.3 Subsystem Decomposition
5.3.1 Athena Assessment Service.
5.3.2 Text/Programming LLM Module
5.3.3 Research and Development Playground
534 Artemis
5.4 Hardware Software Mapping

Object Design

6.1 Athena Assessment Service
6.2 Athena: Text LLM Module
6.2.1 Generating Feedback Suggestions
6.2.2 Generating Evaluations
6.3 Athena: Programming LLM Module
6.4 Research and Development Environment
6.4.1 Module Configuration
6.4.2 Module Requests 0.
6.4.3 Evaluation Management
Evaluation
7.1 Designo
7.1.1 Data Selection L.
7.1.2 Experiments
7.2 Objectives
7.2.1 Text Exercises
7.2.2 Programming Exercises
7.3 Results.
7.3.1 Text Exercises
7.3.2 Programming Exercises
74 Findingso
7.4.1 Text Exercises L.
7.4.2 Programming Exercises
7.5 Discussiono
7.5.1 Text Exercises L.
7.5.2 Programming Exercises
7.5.3 Implications for Artemis
7.6 Limitations o

il

32
32
33
34
35
36
37
38
39

41
41
42
42
44
46
o1
o1
o1
51

8 Summary 72

81 Status 72
8.1.1 Realized Goals 72
81.2 Open Goals 74

82 Conclusion 75

8.3 Future Work 76
8.3.1 Fine-Tuning Large Language Models 76
8.3.2 Agentic Approach for Programming Exercises 7
8.3.3 Modeling Exercises 7

A Data Exploration 79

A.1 Data Acquisition and Selection 79

A.2 Exploratory Data Analysis (EDA) 79
A2.1 Overview 81
A22 Text Exercises, 82
A.2.3 Programming Exercises 87

v

Chapter 1

Introduction

Can technology revolutionize the way we educate by doing what humans
can’t scale? This question has gained critical importance as student enroll-
ments increase, especially in technical disciplines. The Technical University
of Munich (TUM) is a prime example, recording an increase of 8 000 students
in the last five years, reaching a total of 48 296 students for the academic year
2021 [Mii22]. This surge includes 2468 first-year students in computer sci-
ence alone, emphasizing the scalability challenge in educational settings.

Feedback is essential in educational settings for helping students get bet-
ter at their subjects, especially in technical areas such as engineering or
computer science, where deep understanding is crucial [NMDO06]. Teachers
have the important responsibility of providing targeted feedback to each stu-
dent [WHZ'15]. In a small class, it is easier for a teacher to know which
students need more help and give them specific advice. However, when a
class has many students or students that are in different places, it becomes
much more challenging for the teacher to give each student the personal
feedback they need for effective learning [Kru21].

Concurrently, education technology is undergoing a transformative shift,
driven by the widespread use of digital tools, which both test old ways of
teaching and open new paths for student-focused learning [CH10]. Learning
Management Systems (LMSs) emerge as a pivotal solution in this landscape,
addressing the challenge of scalability without compromising the quality of
education [TCL21]. Their adaptive frameworks and automated features sup-
port instructors in effectively engaging large numbers of students.

At the Technical University of Munich, staff and students have created
the LMS Artemis!, a platform for interactive learning that offers individual-
ized feedback [KS18]. Artemis aims to enhance student engagement in large

https://github.com/lslintum/Artemis

https://github.com/ls1intum/Artemis

CHAPTER 1. INTRODUCTION

courses through technology-supported, personalized, and interactive teach-
ing and learning, focusing on reducing grading effort and improving feedback
quality [Kru21].

Although Artemis employs semi-automatic approaches for text and mod-
eling exercises [BB, Kru22], the platform’s capability for programming exer-
cises is mainly limited to automatic testing, static code analysis, and manual
feedback. At the same time, natural language processing (NLP) technologies,
notably Large Language Models (LLMs) such as GPT-3 [BMR*20], GPT-
3.5-Turbo [Tea22|, and GPT-4 [Ope23], offer a promising path for scalable
semi-automating feedback in an educational setting [KSK*23].

Returning to the initial question — can technology scale education in
ways humans can’t? This thesis explores this through the lens of Artemis,
aiming to automate feedback with LLMs. The goal is to affirm that tech-
nology when adequately integrated into systems such as Artemis, can indeed
make high-quality, scalable education a reality.

1.1 Problem

Feedback is essential for students to understand how well they are doing
and what they need to improve [HT07]. However, in the context of large
classes, such as those on the Technical University of Munich’s Artemis plat-
form, delivering individualized feedback presents significant challenges for
instructors [Kru21].

For instance, from the summer of 2019 to the winter of 2022/23, Artemis
recorded an average semester participation of 2 018 students for text exercises
and 3288 students for programming exercises, respectively, as indicated in
Figure A.2. With each tutor responsible for assessing an average of 34 stu-
dents for text exercises and 31 for programming exercises, excluding courses
that solely rely on automation, the workload for tutors becomes substantial,
as shown in Figure A.3.

In programming exercises, automated tests and static code analysis are
heavily used on Artemis to provide feedback, as depicted in Figure A.10.
While automated tests ensure functional correctness and static code analysis
can partially assess code readability and structure, these tools have their
limits. For example, they can’t determine if a student has used the prescribed
algorithm or manage issues related to non-executable code. Thus, additional
manual feedback from tutors is essential to address these specific aspects.

For text exercises, Artemis currently uses a semi-automatic approach us-

1.2. MOTIVATION

ing CoFee? [Ber22| within the framework called Athena®. It is helpful but
has limits. It mainly recycles old feedback for similar text answers. If a
student’s answer is unique, the tool isn’t much help. On top of this, its usage
has been declining recently, as seen in Figure A.6.

Manual feedback, although valuable, imposes a significant burden on tu-
tors [Ala05]. The process is time-consuming and can compromise the con-
sistency and objectivity of feedback. At scale, this method becomes less
practical and poses risks of tutor burnout, affecting overall teaching quality.
This can take away valuable time from other important tasks, such as lesson
preparation or grading other assignments.

Students also face repercussions from this system. Inadequate or delayed
feedback can impair their understanding and skill development. The ab-
sence of personalized feedback can lead to frustration and disengagement,
potentially causing students to discontinue or even abandon courses.

In summary, the current feedback mechanisms for large courses on the
Artemis platform have limitations that affect both tutors and students. Im-
proved, scalable solutions for both text and programming exercises are nec-
essary to offer more individualized and efficient feedback, thereby enhancing
the educational experience for all stakeholders.

1.2 Motivation

The challenges associated with providing high-quality, personalized feedback
in large-scale educational settings underscore the need for innovative solu-
tions. The importance of individualized feedback in enhancing student learn-
ing outcomes and overall educational quality cannot be overstated [KR16].
Therefore, addressing the limitations of the current feedback mechanisms in
the Artemis platform is not only necessary but also timely.

The potential benefits of solving this problem are manifold. Firstly, it
would significantly improve the learning experience for students. By receiving
timely, relevant, and personalized feedback, students can better understand
their strengths and areas for improvement, leading to enhanced learning out-
comes. This could potentially increase student engagement and success rates
in computer science courses at the Technical University of Munich and be-
yond.

Secondly, it would alleviate the workload of tutors. By automating part
of the feedback process, tutors can save time and effort, allowing them to
focus on other crucial aspects of teaching, such as lesson preparation, student

’https://github.com/1slintum/Athena-CoFee
3https://github.com/1slintum/Athena

3

https://github.com/ls1intum/Athena-CoFee
https://github.com/ls1intum/Athena

CHAPTER 1. INTRODUCTION

engagement, and research. This could lead to improved course quality and
increased student satisfaction.

Thirdly, it would contribute to the broader field of education technology.
By leveraging recent advances in natural language processing, particularly
large language models (LLMs), this thesis aims to demonstrate the potential
of these technologies in enhancing the scalability and efficiency of feedback
mechanisms in learning management systems. This could pave the way for
further research and development in this area, potentially transforming the
way feedback is provided in large-scale educational settings.

The work of Bernius et al. [BB, BKB22] on semi-automatically grading
text exercises within the Artemis platform provides a promising starting
point. Their approach has already shown that semi-automatic feedback can
reduce grading overhead by up to 85%. This thesis aims to build on this
success, exploring the potential of LLMs in automating feedback for both
text and programming exercises. By doing so, it seeks to make a significant
contribution to the future of scalable, high-quality education.

1.3 Objectives

The primary aim of this thesis is to enhance the automated feedback mecha-
nisms within Artemis by leveraging large language models (LLMs). The focus
is on addressing the challenges associated with providing individualized and
meaningful feedback in the context of text and programming exercises. The
objectives are as follows:

Feedback Generation for Text Exercises. The first objective is to ex-
plore the feasibility of an LLM-driven feedback generation system for text
exercises within Artemis. The goal is to develop a system that can generate
feedback suggestions, which can assist tutors in the assessment process. The
effectiveness of this system will be evaluated on actual exercises, using met-
rics such as feedback accuracy, token usage, and generation speed.

Feedback Generation for Programming Exercises. The second ob-
jective is to investigate the potential of an LLM-based feedback system for
programming exercises. Given the complexity of coding tasks, this system
will aim to generate feedback suggestions that address unique aspects of
programming. The system’s effectiveness will be evaluated similarly to the
previous objective.

Research and Development Environment. The final objective is to

4

1.4. OUTLINE

establish a research and development environment for Athena. This environ-
ment will serve as the foundation for designing feedback processes, comparing
alternative LLM-driven approaches or CoFee, and rigorously evaluating their
effectiveness within Athena’s framework. The environment will be designed
to facilitate quick iterations, thereby serving as an evolving foundation for
the continuous improvement of the feedback mechanisms.

In summary, this thesis aims to significantly improve the Artemis platform’s
feedback capabilities through the targeted application of LLM technology. By
developing specialized feedback system baselines for text and programming
exercises and constructing a systematic evaluation environment for research
and development, this work seeks to enrich the educational experience for
students and reduce the manual workload for tutors.

1.4 OQOutline

The thesis is organized as follows. Chapter 2, Large Language Models, in-
troduces the necessary background for understanding LLMs. In Chapter 3,
Related Work, we survey current automated feedback systems. Chapter 4,
Requirements Analysis, clarifies the capabilities of our existing system and
outlines the goals and requirements for the proposed system. System Design
is covered in Chapter 5, which explains our chosen architecture. Chapter 6,
Object Design, elaborates on the implementation of the system. Evaluation
methods and results are presented in Chapter 7. The thesis concludes with
Chapter 8, Summary, which recaps our achievements and suggests directions
for future research. Additionally, Data Exploration in Appendix A provides
an in-depth analysis of the existing feedback landscape within Artemis to
inform data-driven development.

Chapter 2

Large Language Models

This chapter lays the groundwork for understanding large language mod-
els. We start with a brief overview, Section 2.1, move on to the evolution
of LLMs in Section 2.2, and finally discuss their application in real-world
settings, in Section 2.3. This framework equips us for the subsequent, more
focused examination of leveraging LLMs in Artemis for automated feedback
generation.

2.1 What are Large Language Models?

Language models are probabilistic models of natural language that assign
probabilities to sequences of words, offering a measure of how likely a given
sentence is to occur [JM23]. This predictive nature enables them to generate
coherent and contextually appropriate text. Large Language Models (LLMs),
a subset of language models, distinguish themselves by being trained on vast
datasets, comprising billions of tokens. This extensive training enables LLMs
to handle a multitude of tasks, from text generation to code writing, without
requiring explicit instructions.

2.2 Evolution of Current LLMs

In 2017, Vaswani et al. at Google introduced the Transformer model in “At-
tention Is All You Need”, which relies solely on attention mechanisms. This
breakthrough served as the foundation for subsequent LLMs by achieving un-
matched results in machine translation tasks [VSP23]. OpenAl presented
the first generation of the Generative Pre-trained Transformer (GPT), em-
phasizing pre-training on diverse, unlabeled text to improve performance
across a range of tasks [RNSS]. Devlin et al. further expanded the field

6

2.3. REAL-WORLD APPLICATION OF LLMS

with BERT, which demonstrated state-of-the-art results in natural language
understanding by using deep bidirectional representations [DCLT19].

As the models evolved, OpenAl released GPT-2, highlighting the abil-
ity of LLMs to learn tasks without explicit supervision [RWC*]. Mean-
while, Google launched T5, a unified framework for text-based language
problems [RSR™20]. GPT-3 took scalability to new heights with 175 billion
parameters, showcasing exceptional few-shot learning abilities [BMR*20].

Further specialization occurred with models such as Codex, fine-tuned for
code writing [CTJ*21], and LaMDA, for dialog applications [TDFH*22]. Re-
search also turned toward alignment with human intent, as seen in Instruct-
GPT [OWJ*22] together with its evolution into GPT-3.5-Turbo [Tea22].
Lastly, the recent introduction of GPT-4 suggests the possibility of mul-
timodal inputs, demonstrating advancements not just in scale but also in
scope [Ope23].

In contrast to proprietary models from OpenAl and other providers,
BLOOM and the LLaMA series stand out as open-access LLMs. BLOOM,
developed through collaborative research, presents a substantial 176-billion
parameter model trained on a rich multilingual corpus [WSF*23]. How-
ever, the LLaMA series, particularly LLaMA 2, emerges as exceptionally
noteworthy. Ranging from 7 to 70 billion model parameters, LLaMA 2 has
demonstrated superior performance in benchmarks, even outpacing GPT-
3 in most metrics. Critically, the open-access nature of LLaMA 2 allows
for fine-tuning and execution on independent infrastructure, empowering the
broader research community [TMS].

The rapid evolution of LLMs offers a promising landscape for educa-
tional technology, especially in automating feedback. Advancements in both
closed-source and open-source models pave the way for automation needed in
platforms such as Artemis. This ongoing growth aligns well with the objec-
tives of this thesis and directly leads us to the next section, where we discuss
how to leverage LLMs in real-world applications.

2.3 Real-World Application of LLMs

Despite their complexity, LLMs have been readily integrated into various
real-world applications. While computational costs and infrastructure re-
quirements pose challenges, services such as Replicate! and HuggingFace?
have mitigated these issues by offering cloud-based solutions. These services

'https://replicate.com
’https://huggingface.co

https://replicate.com
https://huggingface.co

CHAPTER 2. LARGE LANGUAGE MODELS

provide streamlined access to open-source models and handle the intrica-
cies of scaling and execution. Closed-source models from providers such as
OpenAI® and Anthropic* offer APIs to integrate LLMs into applications ef-
fortlessly without revealing their model weights.

2.3.1 (Chat-)Completion Interface

The completion interface, for models such as GPT-3 [BMR*20], has been the
most common interaction mechanism with LLMs. Provided with a prompt,
the input text, the model generates a sequence of tokens as output until a
stop token is reached, this sequence is called the completion. A token is a
single unit of text, usually a word or punctuation mark.

A newer more structured approach takes the chat completion interface, as
used by GPT-3.5-Turbo [Tea22] or GPT-4 [Ope23]. This interface is tailored
for dialogue-oriented applications, in the form of messages from different
roles, and allows for more interactive and conversational engagement with the
model. Usually, only one system message is provided for guidance, followed
by a history of user and assistant messages. Upon calling the chat completion
interface with this input, the model generates a completion for the next
assistant message. The roles of the messages might vary depending on the
application, but the most common ones are user and assistant. This allows
for a more instructive and contextual dialogue between the user and the
system.

2.3.2 Fine-Tuning LLMs

Fine-tuning is an indispensable tool in the deployment of LLMs for special-
ized applications. During this process, an already trained general-purpose
model such as LLaMA 2, GPT-3, or GPT-3.5-Turbo undergoes additional
training on a dataset that closely represents the target application’s context.
In essence, fine-tuning tailors the model to understand the domain-specific
nuances and expectations, thereby increasing its performance in specialized
tasks. Open-source models such as LLaMA 2 aim to simplify this process,
offering straightforward guidelines for fine-tuning [TMS]. Furthermore, com-
mercial platforms such as OpenAl provide fine-tuning capabilities through
their API°, making it feasible to adapt models such as GPT-3, GPT-3.5-
Turbo, and the soon GPT-4 for specific applications.

3https://openai.com
“https://www.anthropic.com
Shttps://platform.openai.com/docs/guides/fine-tuning

8

https://openai.com
https://www.anthropic.com
https://platform.openai.com/docs/guides/fine-tuning

2.3. REAL-WORLD APPLICATION OF LLMS

2.3.3 Basic Workflow: Format, Predict, Parse

The typical workflow for integrating an LLM into an application can be
summarized in three steps, as illustrated in Figure 2.1: Format, Predict,
and Parse. First, we construct a prompt that serves as the model’s input,
often generated from a prompt template with placeholders for prompt input.
Second, we execute the model to produce a sequence of tokens as output.
Finally, depending on the application, we parse the completion output into
a structured format such as JSON for further processing.

Format Predict Parse
Prompt Input

text="Hello",
source="English",
target="Japanese"

"Translate Hello from

English to Japanese" {
Thflword_“Hell?“ is translated Parse Translation “translation™ " Z A5 IE",
J, S o"T Al 513" (Konnichiwa) as JSON “pronunciation”: Konnichiwa"

B R o in Japanese.)

Text/Chat Completion Structured JSON Object

"Translate {text} from
{source} to {target}"

Formatted Prompt

Prompt Template

Figure 2.1: Basic Workflow using Large Language Models.

The ability for LLMs to consistently generate structured output such
as JSON is not a given. It largely depends on how powerful the model
is and how it was trained. For example, OpenAl’s chat models, GPT-3.5-
Turbo [Tea22] and GPT-4 [Ope23], support function calling®, which allows
the LLM to return a structured output directly. This is achieved by fine-
tuning the model on JSON data, enabling it to understand the structure of
JSON and produce a structured output consistently. This is a significant
advantage for applications that require structured output, such as feedback
generation within Artemis, as it eliminates the need for additional parsing
steps.

Shttps://openai.com/blog/function-calling-and-other-api-updates

9

https://openai.com/blog/function-calling-and-other-api-updates

Chapter 3

Related Work

This chapter examines the existing research on automated feedback systems
in educational contexts, focusing on text and programming exercises. The
goal is to position this thesis within the broader academic landscape, identi-
fying its unique contributions.

Basu et al. developed Powergrading, a machine learning technique com-
bined with human expertise to cluster similar student answers for automated
grading of short answers [BJV13]. While this approach streamlines the grad-
ing process, it is not directly applicable to programming exercises and does
not utilize latest advancements of large language models (LLMs).

Singh et al. introduced Gradescope, an online platform for grading hand-
written assignments and exams using dynamically evolving rubrics [SKGA17].
CoFee, developed by Bernius et al., uses machine learning to automatically
provide feedback on open-ended text exercises [BKB22]. It decreases the
workload for instructors but relies on reusing previous feedback for similar
answers. Schwind later extended this concept with ThemisML for program-
ming exercises [Sch23].

In Automated Essay Scoring (AES), Dong et al. applied recurrent and
convolutional neural networks (RNNs and CNNs) for grading [DZY17]. Ro-
driguez et al. utilized BERT and XLNet models to similar ends [RJO19].
These methods, however, focus primarily on scoring full-length essays rather
than providing feedback on specific aspects of the problem statement.

For programming exercises, existing systems such as WebCAT [EP08] and
the Artemis LMS [Kru21], subject of this thesis, concentrate on automated
testing and static code analysis. Automatic testing and static code analysis
are limited in providing feedback on non-executable code or specific aspects
of the problem statement, which still require manual assessment. This is
where LLMs can play a crucial role to cover these gaps.

Kasneci et al. conducted a comprehensive review on the opportunities of

10

LLMs in educational settings [KSK*23]. They argue for a human-centered
approach, which resonates with this thesis’s aim to create a semi-automated
system that supports tutors in providing feedback.

In summary, existing solutions do not adequately combine the advanced
features of LLMs with the specific needs of both text and programming ex-
ercises within a Learning Management System such as Artemis. This thesis
addresses this gap by employing the latest advancements in LLM technol-
ogy to develop a scalable, adaptable, and efficient feedback system, thereby
making a significant contribution to educational technology and Artemis.

11

Chapter 4

Requirements Analysis

This chapter outlines the requirements for integrating large language mod-
els (LLMs) into Artemis to automate feedback generation. Using Bruegge
and Dutoit’s RAD template [BD10], we first define the system’s purpose,
objectives, scope, and success criteria. Next, we summarize relevant exist-
ing features of Artemis. We then specify the functional and non-functional
requirements of our proposed system. The chapter concludes with system
models, along with corresponding user interface (UI) mockups.

4.1 Overview

As introduced in Chapter 1, the primary purpose of this project is to enhance
the assessment capabilities of Artemis for text and programming exercises.
This is achieved by integrating LLMs, which, as outlined in Chapter 2, are a
rapidly advancing technology with vast potential. We aim to leverage these
capabilities to autonomously generate valuable, personalized feedback within
Athena, the existing automatic assessment framework of Artemis.

Critical to the realization of this objective is the establishment of a re-
search and development environment within Athena. This environment aims
to be a testing ground for fine-tuning the LLM prompts, a crucial factor
in the quality of generated feedback. The ability to rapidly iterate in this
controlled setting is a foundational requirement for the project, enabling us
to optimize prompt effectiveness and minimize error rates in the feedback
generated. We will refer to this context as the Research and Development
Context, while the LMS related context will be referred to as the Learning
Management Context.

Addressing the project’s constraints is crucial for a focused scope. The
development team consists of two people: one concentrating on integrating

12

4.2. CURRENT SYSTEM

LLM-enabled approaches for text and programming exercises, and the other
primarily tasked with generalizing Athena beyond CoFee and its integration
with Artemis. Therefore, it is vital to set realistic expectations regarding
the scope of the system. Our primary focus is to deliver an integrated, well-
documented, and high-quality system that establishes a solid foundation for
future development and iteration. The specific design goals for the proposed
system are outlined in Section 5.2.

The success of the system depends on its ability to consistently generate
high-quality feedback for a diverse range of exercises, seamlessly integrate
with the Artemis platform, and provide tangible benefits to the tutors.

4.2 Current System

Artemis (version 6.1.8), as it stands, offers a range of exercise types, including
text, programming, modeling, among others. Those exercises are conducted
online as part of academic assignments or exams. Artemis supports semi-
automatic assessment for text and modelling exercises, while programming
exercises are managed by manual assessment in addition to automatic testing
and static code analysis. In this section, we discuss the features and limita-
tions of the current system, focusing mainly on the assessment of text and
programming exercises, Section 4.2.1 and Section 4.2.2, respectively.

4.2.1 Assessment of Text Exercises

Artemis employs a manual assessment approach for text exercises, with lim-
ited automation through its Athena framework. Athena uses the CoFee
approach to generate feedback suggestions [Ber22]. These suggestions are
presented to the tutor when assessing a submission, ready for modification
or deletion, if needed.

The assessment interface offers tutors two distinct options for feedback:
referenced and unreferenced. Referenced feedback attaches directly to spe-
cific text blocks in a student’s submission and is displayed inline. If this type
of feedback is generated by Athena, it is labeled with an “automatic” badge,
as illustrated in Figure 4.1a. Conversely, unreferenced feedback, as shown in
Figure 4.1c, is general and applies to the entire submission.

In terms of grading, both referenced and unreferenced feedback can assign
points, ranging from negative to positive values. This scoring system oper-
ates within a defined range, established by the sum of maximum points and
bonus points. To guide tutors during assessment, Artemis presents grad-
ing instructions in a sidebar, as depicted in Figure 4.1b. These grading

13

CHAPTER 4. REQUIREMENTS ANALYSIS

instructions come in two forms: unstructured text and structured grading
instructions. For the latter, tutors can directly link feedback to a structured
grading instruction through a drag-and-drop feature, making it easy to apply
consistent graded feedback.

3/ 3 Points

Bridge Pattern
State Pattern
Composite Pattern
X
Feedback: Points
Correct 3

Number of words: 6 | Number of characters: 46

(a) Automated Feedback Suggestion in Text Exercises. (Screenshot)

Assessment Instructions v

For every correct pattern, give 1 point.

Structured Assessment Criteria v
Points E

@ Drag & Drop the assessment instruction to feedback element

Criterion Title v

1P correct Apply when correct 3@

Feedback ‘ Good job

(b) Grading Instructions in Text Exercises. (c) Unreferenced Feedback in Text Exer-
(Screenshot) cises. (Screenshot)

Figure 4.1: Text Exercise Assessment Features in Artemis.

Statistically, as of March 29, 2023, the majority of text exercises are
conducted in English, accounting for 76.8% of all submissions, while German
follows at 15.6%, as indicated in Figure A.4. Referenced feedback is the
prevailing form, making up 86.6% of all feedback; unreferenced feedback fills
the remaining 13.4%, as shown in Figure A.8a. In terms of structured grading
instructions, they are increasingly being utilized; specifically, in the summer
semester of 2021, 79.2% of all feedback was linked to these instructions, as
depicted in Figure A.7. However, Athena’s automated feedback has yet to
gain widespread use, as shown in Figure A.6.

Despite its utility, the current approach within Athena, CoFee, is not
without limitations. It relies on historical feedback data within an exer-
cise and propagates it to similar text blocks, limiting its ability to generate
feedback for unique or dissimilar text segments. Additionally, it currently
supports only English and offers exclusively referenced feedback.

14

4.2. CURRENT SYSTEM

In summary, while Artemis provides a comprehensive manual assessment
framework for text exercises, it offers limited automation capabilities. The
current system shows gaps in supporting multiple languages and generating
feedback for diverse text segments. These are all areas where our proposed
integration of LLMs could provide significant enhancements.

4.2.2 Assessment of Programming Exercises

Artemis deploys a range of techniques for assessing programming exercises,
including manual assessment, automatic testing, and static code analysis.
The assessment user interface, as shown in Figure 4.2, contains a code view
with a file browser in the left sidebar, a grading instructions panel on the
right, the test results at the top-right, and the build output followed by
unreferenced feedback at the bottom. The interface indicates changed files
in yellow, while added or modified lines are highlighted in green. Tutors have
the option to give both referenced and unreferenced feedback, similar to text
exercises.

Assessment You have the lock for this assessment m Exercise Dashboard

ing wi T: rn in Download Repo 0 to repository %, 13 of 13 passed, points (preliminary) (a few seconds ago)
orting e Strategy Patte oints: & G 100%, 13 of 13 passed, 100 I i d
& File browser < B src/deftum/themis/BubbleSort.java o~ Instructions >
-ﬁpubhc class BubbleSort implements SortStrategy { Assessment Instructions v
] - lease take a special look at the implementation of the sorting
8 gradlew 7 Pl ke I ook at the impl f th
e g | Sorts dates with Bubblesort. algorithms. Furthermore, take a look at the optional challenges if
10 * @param input the List of Dates to be sorted they are implemented by the student.
B settings.gradle 11 WA ; . o
public void performSort(List<Date- input) { Structured Assessment Criteria v

~ @ sro/de/tum)themis for Gint ¢ - input. s\zeO 158 5= 0; 1) {
. for (int j = <i; 3+ {
BubbleSort java i i, a5 SompametoCinput.getC] + 1) > 0 {

Date temp - input.get(j); @ Drag & Drop the assessment instruction to feedback

B Clientjava input.set(j, input. get(J + 1));
| input.set(+ 1, temp) element
B Contextjava L
i Bubble Sort (3 Points) v
B Megesoria FCZ Tutor Comment:
[Eeleyan Good job! 3P Correct The student has implemented a 1@
implementation correct Bubble Sort algorithm
B SortStrategy.java |] by his own.
2 }
23
© Submitted. =R e 2P Slightly wrong The student has implemented 1@

>_ Build Output v

Feedback
o
Points I 25
Feedback You have implemented
everything correctly!
p

Figure 4.2: Programming Exercise Assessment Features in Artemis. (Screen-
shot)

Grading options in programming exercises are similar to those in text
exercises. The interface allows tutors to distribute points within a defined

15

CHAPTER 4. REQUIREMENTS ANALYSIS

range. Artemis also employs grading instructions, presented in the right
sidebar, which come in both unstructured text and structured grading in-
structions, paralleling the text exercise assessment process.

Statistics as of March 29, 2023, reveal that Java leads the exercise sub-
missions, accounting for 77.4% of all programming languages used, followed
by C at 10.7% and OCaml at 5.3%, as shown in Figure A.9. This signals the
importance of Java expertise in the feedback system. Automatic feedback
significantly outnumbers manual feedback, as depicted in Figure A.10, em-
phasizing the system’s efficiency but also highlighting the need for improve-
ments in the manual feedback process. When manual feedback is provided,
it is mainly unreferenced, with 88.5% falling into this category, leaving only
11.5% as referenced feedback, as indicated in Figure A.12. Structured grad-
ing instructions are rarely used in manual feedback, as shown in Figure A.11,
suggesting an area for potential improvement.

Artemis excels in automated assessments, leveraging automatic tests and
static code analysis to validate code correctness and assess basic quality.
However, these methods have limitations, such as an inability to confirm
adherence to specific instructional criteria or handle non-executable code.
Furthermore, the inherent complexity of student-submitted code complicates
manual reviews, and the system provides insufficient support for tutors nav-
igating this labor-intensive task, especially in large courses.

In summary, while Artemis excels in automated assessments, it has no-
table shortcomings in facilitating manual feedback for programming exer-
cises, particularly in the context of complex code and large courses. Inte-
grating LLMs could address these gaps, streamlining the manual assessment
process and enhancing its quality.

4.3 Proposed System

Moving beyond the current system implemented in Artemis, we will outline
the functional and non-functional requirements of our proposed system. We
validate our requirements through Bruegge and Dutoit’s criteria: complete-
ness, consistency, clarity, and correctness, as well as realism, verifiability, and
traceability [BD10].

4.3.1 Functional Requirements

According to Bruegge and Dutoit, functional requirements describe the in-
teractions between the system and its environment, irrespective of its im-
plementation [BD10]. Here, we outline the functional requirements of our

16

4.3. PROPOSED SYSTEM

proposed system, focusing on the Learning Management Context and the
Research and Development Context, as defined in Section 4.1.

Learning Management Context

Functional requirements in the Learning Management Context primarily aim
to optimize the pedagogical process through automated, personalized feed-
back suggestions within an LMS, specifically Artemis.

Text Exercises

FRT.1

FR T.2

FR T.3

FR T4

FR T.5

Generate Feedback Suggestions: When a student’s submission
is received, the system automatically generates feedback suggestions
using the problem statement, grading instructions, and other relevant
information.

Review Feedback Suggestions: After the system generates feed-
back suggestions, the interface provides tutors with options to accept
or reject each suggestion, both unreferenced and referenced.

Learn from Feedback: Once approved or modified feedback is re-
ceived from tutors, the system updates its machine learning algo-
rithms to refine future suggestions, restricted by available computa-
tional resources.

Link Structured Grading Instruction: If structured grading in-
structions are available for a text exercise, the system aligns the
generated feedback suggestions with these instructions to maintain
consistency.

Handle Multiple Languages: For each text submission, the system
supports multilingual feedback suggestions, primarily in English and
German.

Programming Exercises

FR P.1

Generate Feedback Suggestions: Upon receiving a student’s pro-
gramming submission, the system automatically generates feedback
suggestions using template and solution repositories, the problem
statement, and grading instructions, among other relevant informa-
tion.

17

CHAPTER 4. REQUIREMENTS ANALYSIS

FR P.2

FR P.3

FR P4

FR P.5

FR P.6

FR P.7

Review Feedback Suggestions: Once the system generates code-
related feedback, the interface allows tutors to accept or reject each
suggestion. This can be done directly within the code view for both
unreferenced and referenced feedback.

Handle Multiple Programming Languages: For each program-
ming exercise, the system offers feedback generation in multiple lan-
guages, primarily Java, then C and OCaml.

Learn from Feedback: After receiving approved or modified feed-
back from tutors, the system updates its machine learning algorithms
to refine future suggestions, constrained by computational resources.

Link Structured Grading Instruction: If structured grading in-
structions are provided for a programming exercise, the system aligns
generated feedback with these instructions to maintain coherence.

Reference Test Results: During feedback generation, the system
incorporates test results to enrich feedback suggestions, subject to
the availability of predefined tests and their results.

Reference Build Outputs: While generating feedback, the system
includes outputs from the build process, such as compiler errors or
warnings, in the provided feedback, bounded by the availability of
build logs.

Research and Development Context

Functional requirements in this context primarily aim to facilitate research
and iterative development. They are crucial for the adaptability and im-
provement of the feedback generation mechanism.

FR R.1

FR R.2

FR R.3

Use Multiple LLMs: When initiating a research experiment, the
system should provide options to employ various LLMs, enabling
comparative analyses of their feedback generation capabilities, con-
strained by the system’s computational limits.

Configure Feedback Generator: Prior to feedback generation, re-
searchers should be able to configure various parameters and modules
through a user interface.

Evaluate Feedback Quality: Once feedback suggestions are gener-
ated, the system should enable their evaluation against preset bench-
marks, to continually refine the generation process’ efficacy.

18

4.3. PROPOSED SYSTEM

FR R4

FR R.5

FR R.6

FR R.7

FR R.8

FR R.9

FR R.10

FR R.11

Track Token Usage and Generation Time: During the execution
of feedback generation, the system should automatically record the
number of tokens used and the time taken by the LLM, to facilitate
cost-benefit analysis.

Compare Modules: After generating feedback suggestions, the sys-
tem should facilitate the direct comparison of different feedback gen-
eration modules, to pinpoint the most effective strategies.

Define Experiment: Before an experiment is run, the system should
allow the definition of its scope and parameters, enabling the appli-
cation of scientific rigor to the evaluation process.

Conduct Experiment: After defining an experiment, the system
should automate its execution, accommodating modes such as batch
or incremental learning, constrained by computational resources.

Rate Feedback: Following the generation of feedback suggestions
while conducting an experiment, the system should permit manual
rating of their quality, to further inform machine learning models.

Automatic Evaluation: After an experiment concludes, the system
should derive automatic ratings based on preset criteria, to speed up
the evaluation process.

Import Configurations: When initializing a research setting, the
system should facilitate the importation of configuration settings, en-
abling repeatability.

Export Data: Following an experiment, the system should permit
the exportation of collected data and results, for external analysis
and reporting.

4.3.2 Non-Functional Requirements

Non-functional requirements describe the system’s properties or qualities
that are not directly related to its functional behavior [BD10]. Here, we
outline the non-functional requirements that are crucial for the proposed
system’s success.

19

CHAPTER 4. REQUIREMENTS ANALYSIS

Usability

NFR1 User-Friendly Interface: The system should provide an intuitive and
easy-to-navigate user interface for tutors and researchers. It should be
consistent with the existing Artemis interface to minimize the learn-
ing curve for tutors while reviewing feedback suggestions. researchers
should be able to easily access the system’s research and development
features to facilitate experimentation and iteration.

NFR2 Documentation: The system should be accompanied by detailed doc-
umentation, including user guides and technical manuals, to assist tu-
tors, future developers, and researchers.

NFR3 Cognitive Load: Feedback suggestions by the system should reduce
the cognitive load on tutors and should not impose a burden during
review.

Reliability

NFR4 Fault Tolerance: If the system fails to generate feedback suggestions,
the failure should be graceful, allowing tutors to continue manual as-
sessment without disruption.

NFR5 Submission Coverage: The system should be capable of generating
feedback suggestions for a significant portion of a submission, ideally
covering at least 70% of the submission.

NFR6 Feedback Accuracy: The system should generate feedback sugges-
tions that are at least 80% accurate, meaning that they are accepted
by tutors without modification.

NFR7 Feedback Quality: The system should generate feedback suggestions
that are at least the same quality as manual feedback.

Performance

NFR8 Generation Speed: Feedback suggestions should be generated within
a tolerable time frame, ideally not exceeding 15 seconds for each sub-
mission.

NFR9 Response Time: When a tutor starts assessing a submission, the
system should respond within a few seconds with feedback suggestions,
or immediately if the suggestions are pre-generated.

20

4.4. SYSTEM MODELS

NFR10 Scalability: The system must be able to handle increased loads —
from a large number of students or more complex exercises — without
experiencing significant performance degradation.

Supportability

NFR11 Cost Efficiency: Running the system should be more cost-effective
than human labor, either by reducing the time spent by tutors or by
enhancing the quality of feedback substantially.

NFR12 Module Extensibility: The system’s architecture must allow for the
easy addition or modification of feedback generation processes to facil-
itate future development and research.

4.4 System Models

This section begins with the presentation of possible scenarios for the pro-
posed system. These scenarios are then further detailed using use cases,
which help us to define the analysis object model and dynamic model. The
final part of this section outlines the expected changes in the Artemis user
interface, demonstrated using mockups. We employ Unified Modeling Lan-
guage (UML), a standard set of notations for representing models, to offer
precise specifications [BD10].

4.4.1 Scenarios

A scenario is a narrative that describes the interaction between a user and a
system, focusing on the execution of a specific feature. It serves as a valuable
tool for eliciting system requirements [BD10]. While the following visionary
scenario serves as an aspirational use-case for student interactions, the pri-
mary focus of this thesis lies in the two demo scenarios. These specifically
address the system’s implications and functionalities for tutors.

Visionary Scenario

Imminent Feedback for Interactive Learning for Students. Alice, a
freshman-student at the university, is working on her weekly programming
assignment for “Fundamentals of Programming” via Artemis. Although,
Artemis’ automatic tests and static code analysis have flagged some errors,
she is still confused about some programming concepts while implementing a

21

CHAPTER 4. REQUIREMENTS ANALYSIS

sorting algorithm in Java. In need of guidance, Alice turns to a new feature
called Interactive Tutor.

Upon activation, the Interactive Tutor immediately pinpoints the recur-
sive function in her code and asks, “It looks like you're having trouble with
recursion. Would you like some tips?” Alice clicks “Yes”, and the Tutor
elaborates, “Recursion requires a base case to prevent infinite loops. Your
current code lacks that”. This information directly addresses the conceptual
gap that neither automatic tests nor static code analysis could fill.

Alice, appreciative but still a bit puzzled, types in a follow-up question:
“How do I actually write a base case in Java? Is it different from a regular
‘if” statement?” The Tutor responds, “In Java, a base case is generally im-
plemented using an ‘if” statement at the beginning of the recursive function.
The key is to return a value that doesn’t call the function again.” It then
shows her a sample Java code snippet illustrating a proper base case for a
recursive function.

Motivated by the example, Alice modifies her code and incorporates a
fitting base case. The Interactive Tutor acknowledges her progress, stating,
“Great, your base case looks solid now!” She clicks the provided “Learn
More” link, leading her to lecture slides for further study.

As Alice reflects on her encounter with the Interactive Tutor, she feels
immensely supported in her learning journey. The feature’s ability to pro-
vide immediate, personalized feedback elevates her understanding of com-
plex programming concepts. Beyond mere comprehension, it instills in her
a newfound confidence and independence, empowering her to tackle future
challenges with greater self-assurance.

Demo Scenarios

Assisted Manual Assessment for Tutors. Bob, a seasoned tutor for the
“Fundamentals of Programming” course, is faced with the challenge of grad-
ing assignments for over 30 students each week. Though well-versed in pro-
gramming, the sheer volume and repetition involved in manual assessments
present a bottleneck. The latest version of Artemis introduces enhancements
to Athena, its automated assessment framework, designed to alleviate such
issues.

Bob initiates the assessment of Alice’s programming submission. The
code is annotated with feedback suggestions from Athena, labeled as “Sug-
gestion”. He reviews each suggestion and uses the “Accept” or “Reject”
button to either incorporate or discard them. Additionally, Bob opts to edit
some of the accepted suggestions, revising the feedback’s description and
points to improve accuracy. Finally, he supplements Athena’s recommen-

22

4.4. SYSTEM MODELS

dations with additional feedback and a personal note before finalizing the
assessment by clicking “Submit”.

This hybrid assessment strategy improves Bob’s efficiency and allows him
to offer nuanced feedback. Athena’s automation reduces his workload while
amplifying the quality of the assessments. Thus, the combined strengths of
human expertise and automated precision provide a robust, efficient, and
practical assessment paradigm, enriching the educational experience for tu-
tors and students alike.

Research and Development Environment for Researchers. Dr. Caro,
a university researcher, anticipates the transformative potential of a newly
released machine learning model called AiThENA-3 for Athena. Excited to
explore this opportunity, she quickly integrates AiThENA-3 into the code-
base for text exercise assessment and utilizes the Playground, Athena’s re-
search and development dashboard, to conduct her experiment.

Dr. Caro configures her experiment within the Playground, selecting his-
torical Artemis data as the data source, a text exercise as the target, and
correctness as the evaluation metric. She then configures the feedback gener-
ators by setting up the AiThENA-3 module and importing the CoFee module
as a baseline using the “Import” button. Afterwards, she initiates the exper-
iment by clicking “Conduct Experiment”.

Upon reviewing the experiment’s output, Dr. Caro can already eyeball
AiThENA-3’s superior performance over CoFee. To validate her observa-
tions, she reviews the automated correctness estimates against her own rat-
ings. While she finds the estimates generally accurate, there are some diver-
gences which she corrects manually. She finalizes the experiment by clicking
“Finish”.

Dr. Caro then exports the experiment’s configuration and data by click-
ing “Export”, enabling further analysis and potential academic publication.
Convinced by the experiment’s outcomes, she moves forward with integrat-
ing AIThENA-3 into Athena’s production environment, thus enhancing the
system’s feedback generation capabilities.

4.4.2 Use Case Model

Transitioning from scenarios, which offer specific instances of user interac-
tions, we now explore use cases based on the demo scenarios. These serve
as comprehensive representations of functionalities, capturing all possible
scenarios initiated by different actors [BD10]. This approach allows for a
structured analysis within both the Learning Management and Research and
Development contexts.

23

CHAPTER 4. REQUIREMENTS ANALYSIS

Learning Management Context

Figure 4.3 illustrates the use case diagram within the Learning Management
Context, Artemis, featuring the interactions between tutors and Athena.
Central to this interaction is the Assess Submission use case, an existing
function within Artemis. Tutors begin the assessment process by examining
student submissions, which leads them to the Review Feedback Sugges-
tions use case (FR T.2, FR P.2).

Learning Management Context)

Reject Accept Learn from Feedback
Suggestion Suggestion %
Generate Feedback
Review Feedback Suggestions
Suggestlons

«mclude»
Generate Text Generate Programmlng
w Exeruse Feedback ExerC|se Feedback

New Adapted || Existing

Artemis (LMS)

Athena

Tutor

Figure 4.3: UML Use Case Diagram for the Learning Management Context. De-
picting the interaction of the Tutor and Athena, the automated feed-
back system within Artemis (LMS). New, adapted, and existing use
cases are marked.

The Review Feedback Suggestions use case has been refined to ac-
commodate both text and programming exercises. While it previously only
supported referenced feedback suggestions, it now offers tutors a new option
where they can accept or reject suggestions, including unreferenced ones.
Previously, all suggestions were automatically accepted by default. Accepted
suggestions are incorporated into the assessment, while rejected suggestions
are discarded. After accepting a suggestion, tutors can edit or delete it as
part of the Assess Submission use case.

On the side of Athena, the automated feedback system, there are several
use cases aimed at enriching its capabilities. It Generates Feedback Sug-
gestions for both text (FR T.1) and programming exercises (FR P.1). The
use case related to text exercises is adapted, whereas the one for program-
ming exercises is new. Athena can also adapt and Learn from Feedback
(FR T.3, FR P.4) provided by tutors to improve future suggestions.

24

4.4. SYSTEM MODELS

In the use case Generate Feedback Suggestions, Athena, incorpo-
rates advanced features to enrich the feedback suggestions. For text exer-
cises, the feature Handle Multiple Languages (FR T.5) enables feedback
suggestions for multilingual submissions. In the context of programming ex-
ercises, we include three key features: Handle Multiple Programming
Languages (FR P.3), Reference Test Results (FR P.6), and Reference
Build Outputs (FR P.7).

In summary, the Learning Management Context use cases streamline the
collaboration between tutors and Athena. This enhances the assessment
process in Artemis, contributing to a more effective educational environment.

Research and Development Context

The Research and Development Context constitutes a crucial part of Athena’s
functionality and serves as a playground for researchers to experiment with
feedback generation algorithms, including various LLMs. The focus here is
on a set of use cases that enable researchers to establish rigorous research
experiments, iterate on them, and evaluate the outcomes systematically.

Figure 4.4 depicts a structured view of interactions between researchers
and Athena in this context. A cornerstone use case is Define Experiment
(FR R.6), where researchers can set the scope and evaluation metrics for an
experiment. It serves as the precursor to the Configure Feedback Gener-
ator use case (FR R.2), where different LLMs can be selected and parameters
can be adjusted to tailor the feedback generation process (FR R.1).

Upon configuring the experiment, researchers can initiate it using the
Conduct Experiment use case (FR R.7). This use case encompasses criti-
cal functionalities such as tracking token usage and generation time (FR R.4).
It includes the Compare Feedback Suggestions use case (FR R.5), where
outputs from different feedback generation modules are directly compared,
providing actionable insights into their efficacy.

As part of the experiment evaluation while a researcher is conducting
an experiment, the Rate Feedback Suggestions use case (FR R.8) en-
ables researchers to manually grade the quality of generated feedback. This
manual rating serves as a valuable data point for the Review Automatic
Ratings use case (FR R.9), where these manual ratings are compared with
the system’s own metrics for evaluating the feedback quality (FR R.3).

Finally, the Import/Export Configuration and Data use case facil-
itates the researcher’s workflow by allowing the importation of pre-defined
experiment configurations (FR R.10) and the exportation of experiment data
for further analysis (FR R.11).

This array of use cases equips researchers with a robust set of tools to

25

CHAPTER 4. REQUIREMENTS ANALYSIS

Research & Development Context)

Athena

Define Experiment

Compare Feedback
Suggestions

Configure Feedback
Generator

«includey. ----~

%] < inciuder
~_ Conduct Experiment ~ D------=-----=2--.> Rate Feedback
\ Suggestions

Researcher . .
=~-._«include»

Import/Export —=) -
Configurations and Data Review Automatic Ratings

Figure 4.4: UML Use Case Diagram for the Research and Development Context.
[ustrating the interaction between the Researcher and Athena in a
research and development environment.

iteratively improve Athena’s feedback generation capabilities, thereby en-
hancing the effectiveness of the Learning Management System, Artemis, in
which Athena is embedded.

4.4.3 Analysis Object Model

The Analysis Object Model (AOM) serves as a conceptual framework that
captures the key entities, attributes, and relationships in the user’s view of
the system. Rooted in UML class diagrams, it provides a high-level ab-
straction of the problem domain, essentially acting as a visual dictionary for
comprehending main user-level concepts [BD10]. In the following, we present
the AOM for the proposed system, as depicted in Figure 4.5.

In the AOM, an Exercise — with a title, due date, problem statement,
grading instructions, and maximum achievable points — is either a Text
Exercise, with a solution text, or a Programming Exercise, with so-
lution, template, and test repositories. Depending on the exercise type, a
Submission is either a Text Submission, with a submission text, or a
Programming Submission, with a submission repository, build output
and test results.

A Tutor can assess a submission with multiple pieces of Feedback —
each containing a comment, credits, and a reference within the submission
— and submit the feedback for the submission. Feedback is either Manual

26

4.4. SYSTEM MODELS

Programming Submission

L repository creates
Text Submission buildOutput Tutor __creates K >
text testResults name :
[]
v * .
Submission Feedback) Manual Feedback
N rovide
submissionDate {@——————— comment P 0
credits K
assess() reference Feedback Suggestion
edit() accept()
submit() reject()
Text Exercise Exercise I
solutionText title FeedbackGenerator
- - dueDate model - «creates» -
Programming Exercise problemStatement approach
- - gradinglInstructions parameters i
solutionRepository maxPoints Rating
templateRepository configure()
testsRepository /I\ generateSuggestions() metric
Experiment learnFromFeedback() value

trainingSubmissions é
evaluationSubmissions

define() é‘?f.e?.t?.s.». Researcher| - Manual Rating Automatic Rating
conduct() name

compareSuggestions() provide() review()

import()

export()

Figure 4.5: UML Class Diagram for the Analysis Object Model of the Proposed
System.

Feedback, that a tutor can provide, or an automatically generated Feed-
back Suggestion. The tutor can accept or reject a feedback suggestion and
edit feedback before submitting it.

The Feedback Generator associated with the exercise can generate sug-
gestions for its submissions, and learn from feedback submitted by tutors to
improve future suggestions. For enhancing the feedback generation process,
a Researcher can define an experiment for an exercise together with a set
of submissions for training and evaluation. The researcher can then configure
the feedback generator to select the model, approach, and parameters used for
the experiment. Following that, the researcher can conduct the experiment
generating feedback suggestions for the evaluation submissions.

A Rating is a metric-value pair, which can be either an Automatic
Rating or a Manual Rating. For evaluation purposes, the system auto-
matically generates ratings for the feedback suggestions. Researchers can
compare suggestions in order to efficiently review automatic ratings and pro-
vide manual ratings for the feedback suggestions. Finally, the researcher
can ezport the experiment data and import experiment configurations for
repeatability.

27

CHAPTER 4. REQUIREMENTS ANALYSIS

4.4.4 Dynamic Model

In the following subsection, we turn our attention to the Dynamic Model. Us-
ing UML activity diagrams, we analyze the behavior of the proposed system
within the contexts of learning management and research and development.

Learning Management Context

Figure 4.6 shows an activity diagram for the assessment workflow involving
a tutor and Athena. Before the assessment by a tutor begins, Athena starts
with generating feedback suggestions for a submission and passes them to the
tutor. The tutor then starts to manually assess the submission as usual and
reviews the suggestions in parallel. Each feedback suggestion can be either
accepted or rejected by the tutor. If a suggestion is accepted, it is incorpo-
rated into the assessment. If a suggestion is rejected, it is discarded. In both
cases, the tutor can edit the suggestions as part of the assessment, before
submitting the feedback. Once the feedback is submitted, it gets passed to
Athena, which learns from the feedback to improve future suggestions.

Learning Management Context)

Tutor Athena

Generate Feedback
Suggestions
\l/—{ Feedback Suggestion ||

Feedback Suggestion,

! «iterative»
:

Assess : Accept Reject :
Submission Suggestlon Suggestion

Submit Feedback Feedback L,?:;QJ:;E‘

Figure 4.6: UML Activity Diagram for the Assessment Workflow Within the
Learning Management Context.

28

4.4. SYSTEM MODELS

Research and Development Context

The activity diagram in Figure 4.7 illustrates the workflow of conducting an
experiment within the research and development context. The researcher
starts by defining an experiment, which includes the exercise, submissions,
and evaluation metric. Then, the researcher configures the feedback gen-
erator by selecting the model, approach, and parameters. Afterwards, the
researcher starts conducting the experiment, which first passes the train-
ing submissions with its feedback to Athena to learn from them. Then, for
each evaluation submission, Athena generates feedback suggestions, which
are passed to the researcher for review. The researcher can then compare
the suggestions, while reviewing the automatic ratings and providing man-
ual ratings. Finally, the researcher can export the configurations and data
for further analysis.

Research & Development Context)

Athena Researcher

Configure Feedback
Generators
Start Conducting
Experiment

Submission in Evaluation Submissions

Define Experiment

Training Submissions & Feedback (]

(Learn from Feedback)

| «iterative»
H

Generate Feedback
Suggestions

Submission

Feedback Suggestion m—\l/
Review Automatic
Ratings
Compare
ack

Feedb
Suggestions

Rate Feedback
Suggestions

Export Configurations
and Data

Figure 4.7: UML Activity Diagram for the Workflow of Conducting an Experi-
ment Within the Research and Development Context.

29

CHAPTER 4. REQUIREMENTS ANALYSIS

4.4.5 User Interface

This subsection elaborates on the alterations needed in the Artemis user
interface to effectively incorporate the new feedback suggestion system. We
focus on designs within the Learning Management Context, leaving out the
Research and Development Context due to its evolving nature. Our design
mockups aim for coherence with the existing Artemis Ul features.

Figure 4.8 outlines the design elements for introducing inline feedback
suggestions in both text and programming exercises. Here, we adopt the
established “Automatic” badge from existing text exercise suggestions, as
seen earlier in Figure 4.1a. Contrary to the current setup where feedback
for text exercises is auto-accepted, the new Ul incorporates “Accept” and
“Reject” buttons. These buttons are displayed in Figure 4.8a. Accepting
a suggestion adds it to the assessment and allows for further editing, while
rejection removes it. Accepted suggestions will carry a green checkmark in
addition to the “Automatic” badge as shown in Figure 4.8b.

These buttons serve an essential function: they enable tutors to examine
suggestions before incorporating them into assessments. This approach sup-
ports a more conscious decision-making process, contributing to the project’s
research and development data collection objectives, while also reducing the
risk of bias.

A
Bl Tutor Comment: @ Accept | © Reject

Be careful that this class does not turn into a god class antipattern

(a) Review referenced feedback suggestion

n Tutor Comment:

Be careful that this class does not turn into a god class antipattern

(b) Accepted Referenced Feedback Suggestion

Figure 4.8: Proposed Inline Feedback Suggestion UI. (Mockup)

Similarly, for unreferenced feedback suggestions, shown in Figure 4.9,
we introduce “Accept” and “Reject” buttons. On accepting, the suggestion
merges into the assessment and becomes editable. Rejected suggestions will
be deleted. An accepted suggestion will display a green checkmark next to
its badge, making it consistent with referenced feedback. This is particularly
new for text exercises and is visualized in Figure 4.9b.

30

4.4. SYSTEM MODELS

To clarify, the introduction of feedback suggestions for programming ex-
ercises is completely new, and for text exercises, the novelty lies in offering
unreferenced feedback suggestions and a new choice architecture. These fea-
tures enhance the existing framework, offering tutors an improved, thoughtful
assessment experience.

@ Accept | © Reject

Points 3

Feedback Good job! Everything is correct

(a) Review unreferenced feedback suggestion

@ Automatic

Points 3

Feedback Good job! Everything is correct ,

(b) Accepted Unreferenced Feedback Suggestion

Figure 4.9: Proposed Unreferenced Feedback Suggestion UI. (Mockup)

31

Chapter 5

System Design

In accordance with the System Design Document (SDD) framework outlined
by Bruegge and Dutoit [BD10], this chapter describes the design of our sys-
tem. We initiate by presenting an overview in Section 5.1. Next, we articulate
the design goals in Section 5.2, drawing upon the non-functional requirements
discussed in the previous chapter. Finally, we expand on subsystem decompo-
sition and hardware-software mapping of our proposed system in Section 5.3
and Figure 5.5, respectively.

5.1 Overview

Aiming to augment the Artemis platform, our design introduces significant
architectural modifications to the initial Athena system. Initially supporting
only the CoFee approach for text exercises, Athena evolves to accommo-
date multiple feedback generation algorithms via a microservices architec-
ture. The proposed LLM-based feedback generation modules are seamlessly
integrated into this newly restructured architecture. Complementing this, we
introduce the Research and Development (R&D) Playground, a dedicated
component for iteratively experimenting with automated feedback mecha-
nisms.

Importantly, for the integration with Artemis, the design capitalizes on
the existing architectural foundation of Artemis. This approach mitigates
the need for extensive refactoring and allows for quicker adoption by devel-
opers already familiar with the Artemis system. It thereby satisfies both
architectural consistency and developmental efficiency.

32

5.2. DESIGN GOALS

5.2 Design Goals

Based on the outlined non-functional requirements in Section 4.3.2, we es-
tablish the design goals essential to the success of our proposed system. Ad-
ditionally, we deliberate on the prioritization of these goals and consider
potential trade-offs. For systematic evaluation, we adopt the design criteria
classification proposed by Bruegge and Dutoit [BD10], categorizing our de-
sign goals into five groups: Performance, Dependability, Cost, Maintenance,
and End-user criteria.

Performance. The primary performance criteria include response time
(NFR9), scalability (NFR10), and feedback generation speed (NFR8). Our
system aims to provide feedback suggestions immediately after a tutor ini-
tiates the assessment process, ideally within a few seconds. Scalability is
crucial as the system must handle increased loads, such as a large number
of students or more complex exercises, without significant degradation in
performance. While feedback generation speed is not as critical as response
time, it should be fast enough to be usable at scale, i.e. not exceeding 15
seconds for each submission, if the generation process is not parallelized.

Dependability. Key factors for system dependability include fault toler-
ance (NFR4), submission coverage (NFR5), feedback accuracy (NFR6), and
feedback quality (NFR7). The system should minimize disruption in case
of failure, allowing tutors to proceed with manual assessments. Aimed to
cover at least 70% of a student’s submission, the system’s generated feed-
back should maintain an 85% accuracy level to ensure its usefulness and
acceptance among tutors. Quality-wise, the system’s feedback should be on
par with manual feedback provided by tutors.

Cost. The primary cost criteria involve cost efficiency (NFR11). Given
that Artemis is an open-source project with limited funding, it is essential
for our system — an intended extension of Artemis —— to minimize opera-
tional costs. The proposed system aims to be more cost-effective than human
labor, either by reducing the time tutors spend on feedback or by significantly
enhancing feedback quality.

Maintenance. The key maintenance criteria include module extensibil-
ity (NFR12) and documentation (NFR2). Our system aims to be built on
a flexible architecture that allows for easy addition or modification of feed-
back generation processes. This design goal will enable future development
and research, making it easier for subsequent developers to contribute to the

33

CHAPTER 5. SYSTEM DESIGN

project. Furthermore, comprehensive documentation is a priority to aid in
understanding the system’s architecture and functionalities, thus simplifying
maintenance efforts.

End user criteria. For the end user, the criteria focus on usability (NFR1)
and cognitive load (NFR3). The system aims to offer an intuitive and easy-to-
navigate user interface that is consistent with the existing Artemis interface.
This is to ensure a minimized learning curve for tutors and facilitate ease
of access to research and development features for researchers. Additionally,
feedback suggestions should not add a cognitive burden on tutors, making
it easier to review and apply. In terms of data protection, compliance with
GDPR is essential to safeguard user data, ensuring that it does not leave
German jurisdiction unless compliance can be confirmed.

Prioritization and Trade-offs. In prioritizing our design goals, depend-
ability takes precedence because the system’s reliability directly impacts user
trust and the overall success of the system. Next, we focus on performance
and end-user criteria, as quick response times and usability significantly in-
fluence user experience. Cost and maintenance follow closely, emphasizing
long-term sustainability.

Trade-offs are inevitable. For instance, achieving high dependability may
increase operational costs, potentially conflicting with our cost-efficiency
goal. Similarly, prioritizing rapid response times might compromise the
quality of generated feedback, impacting dependability. These trade-offs are
carefully considered and balanced to optimize system performance without
sacrificing critical aspects such as dependability and user experience.

This strategic prioritization ensures the system’s robustness while ac-
commodating budget and time constraints, thus aligning closely with both
end-user needs and project objectives.

5.3 Subsystem Decomposition

To improve semi-automatic assessment in Artemis, it is necessary to break
down the overall architecture into its main parts or subsystems. This makes
it easier to understand the system and plan future changes. We focus on four
main subsystems: Athena Assessment Service (Section 5.3.1), Text/Program-
ming LLM Module (Section 5.3.2), Research and Development Playground
(Section 5.3.3), and Artemis itself (Section 5.3.4).

34

5.3. SUBSYSTEM DECOMPOSITION

5.3.1 Athena Assessment Service

The Athena Assessment Service is the heart of the system. It manages
and runs the automated feedback for learning management systems such as
Artemis. As shown in Figure 5.1, this subsystem connects with the Artemis
Application Server, the R&D Playground, and the Large Language Model
service. Inside the Athena Assessment Service, we find several components:
Assessment Module Management, CoFee Module, Text LLM Module, and
Programming LLM Module.

O
- |
Athena A < Servi Automatic
ena Assessment Service Evaluation R&D Playground
%:] Service g El
CoFee Module -_..| Assessment Module
I g] l< i Management E O
: Feedback Artemis Artemis
Suggestions Application Server gl O Application Client $:|
Service Artemis
Programming {l Text {l API
LLM Module LLM Module

Large Language
—0

LLM
Completion
Service

New Adapted || Existing

Figure 5.1: UML Component Diagram for the Top-Level Subsystem Decompo-
sition. New, adapted, and existing components are marked.

The Assessment Module Management component serves as the orches-
trator, streamlining communication between Athena Assessment Service and
external systems such as the Artemis Application Server and the RED Play-
ground. When activated via a REST API, this module fetches assessment
data from the connected system, routes it to the relevant internal module,
and returns the generated feedback suggestions either to Artemis or the RéD
Playground.

The CoFee Module stands as the existing module for generating feedback
on text exercises, following the established method [Ber22]. Assessment Mod-
ule Management invokes this module when the CoFee approach is specified
for an exercise, yielding feedback suggestions accordingly.

Both the Text LLM Module and the Programming LLM Module intro-
duce new avenues for feedback generation, leveraging the capabilities of large
language models. These modules interact with an external Large Language
Model service to produce natural language text completions to facilitate the
feedback generation process.

35

CHAPTER 5. SYSTEM DESIGN

A REST API underlies the interactions among these components, as well
as with the Artemis Application Server and RéD Playground. This archi-
tecture ensures modularity, scalability, and flexibility, making it conducive to
future extensions. It aligns seamlessly with both the immediate operational
requirements and the long-term research goals, thereby fulfilling the system’s
multi-faceted objectives.

5.3.2 Text/Programming LLM Module

The LLM Module encompasses two closely related subsystems: Text LLM
Module and Programming LLM Module. These subsystems share the same
foundational architecture, as illustrated in Figure 5.2. Their primary respon-
sibility is to generate automated feedback for text and programming exercises
using large language models.

LLM Module $:|
Assessment = S |[._ ___ Feedback Generation Automatic Evaluation
Management E < E E O
/;'\ ! ! ! Automatic
H H H . Evaluation
Feedback LLM Tracker Service
Learning E < > E <

N Q

Large Language {l
Assessment Feedback —
Data Suggestions O Model
Service Service LLM
Completion
Service

Figure 5.2: UML Component Diagram for the Subsystem Decomposition of a
LLM Module.

At its core, the Assessment Management component retrieves and man-
ages data concerning the assessment process. When new feedback becomes
available, the Feedback Learning component updates the feedback generation
model accordingly, enhancing its performance over time.

Meanwhile, the Feedback Generation component is responsible for gener-
ating feedback suggestions. It incorporates insights from the Feedback Learn-
ing component and uses the Large Language Model to produce these sugges-
tions, which are subsequently made accessible via a dedicated interface.

The Automatic Fvaluation component serves a dual function. Primar-
ily, it gauges the effectiveness of the generated feedback for ongoing quality
assurance. Moreover, it employs the Large Language Model to make these
judgments, providing an objective evaluation of the system’s output. The re-

36

5.3. SUBSYSTEM DECOMPOSITION

sults of this evaluation are offered through another distinct interface, aiding
in ongoing research and refinement processes.

Lastly, the LLM Tracker handles the system’s logging and monitoring
needs, keeping track of LLM calls and their results. This information is cru-
cial for debugging, performance optimization, and research and development,
thus contributing to the system’s overall dependability.

5.3.3 Research and Development Playground

The RED Playground serves as a hub for experimentation, tightly integrated
with the Athena Assessment Service using both the Feedback Suggestions
Service and Automatic Evaluation Service. As portrayed in Figure 5.3, it
comprises three core components: Module Requests, Module Configuration,
and Ezrperiment Management.

R&D Playground {l
Module .
Configuration El :

/;'\ Experiment $:|
! Management
Athena Assessment N Module
Service Q Requests $:| <
Feedback
Suggestions

Service
Q
4
Automatic

Evaluation
Service

Figure 5.3: UML Component Diagram for the Subsystem Decomposition of the
R&D Playground.

A researcher initiates the experimentation cycle by configuring feedback
algorithms via the Module Configuration component. This configured setup
serves as an input for the Fxperiment Management component, which over-
sees the entire life cycle of an experiment. This involves managing the train-
ing data, evaluation submissions, and evaluation metrics. To execute the
experiment, Fzxperiment Management interacts with the Module Requests
component, which in turn interfaces with the Athena Assessment Service to
fetch feedback suggestions and automatic evaluations.

The design of RED Playground underscores its role in providing a robust
environment for iterative research. It allows for agile modifications to algo-
rithms, enabling researchers to rapidly assess changes and ensure they align
with the design goals. Consequently, this subsystem facilitates methodical

37

CHAPTER 5. SYSTEM DESIGN

evaluation and optimization of feedback mechanisms, which is central to the
Artemis platform’s objectives of enhanced learning outcomes.

To realize the R€D Playground, a web application will be developed using
the Next.js! framework. This choice aligns with the goal of efficient develop-
ment and easy integration, as Next.js offers server-side rendering capabilities
within a React?-based environment.

5.3.4 Artemis

Artemis, built on a client-server architecture, serves as the primary foun-
dation for integrating our proposed system. The client layer relies on the
Angular?® framework, while the server layer utilizes Spring Boot*. For clarity,
Figure 5.4 outlines the simplified proposed architectural alterations.

Artemis Application Server {l Artemis Application Client {l
____________ Text Assessment n\ Text Suggestions
v Management E U Component El
i Text
Feedback Suggestions
Management El Asg:?vsir::nt
A ___________ Programming {l N\ Programming {l
Assessment Management S Suggestions Component

Programming
Assessment

Service

(O Athena Assessment {'
Service

Feedback
Suggestions
Service

New Adapted || Existing

Figure 5.4: UML Component Diagram for the Subsystem Decomposition of the
Feedback Suggestions Within Artemis. New, adapted, and existing
components are marked.

On the server side, the key component is Feedback Suggestions Manage-
ment. This component serves as a replacement for the current component
managing feedback suggestions using the CoFee approach. It orchestrates the
management of feedback suggestions accommodating diverse exercise types.
Its central role is to optimize system performance by pre-generating feedback
suggestions, thereby decoupling feedback generation speed from system re-
sponse time. This ensures that tutors can start an assessment immediately

"https://nextjs.org
’https://reactjs.org
3https://angular.io
‘https://spring.io/projects/spring-boot

38

https://nextjs.org
https://reactjs.org
https://angular.io
https://spring.io/projects/spring-boot

5.4. HARDWARE SOFTWARE MAPPING

without waiting for feedback generation. Additionally, this component man-
ages the balance between pre-generated and on-demand feedback, ensuring
that the system learns from tutor feedback.

Building on the Feedback Sugestions Management, the Text Assessment
Management and Programming Assessment Management component man-
age the semi-automatic assessment process, channelling the necessary assess-
ment data to the client. On the client-side, two specific components assume
responsibility for the user interface: the Text Suggestions Component and
the Programming Suggestions Component. These components display the
pre-generated or real-time feedback suggestions to the tutors and handle
subsequent actions, such as accepting or rejecting the feedback suggestions.

These enhancements to Artemis contribute to achieving the design goals
of performance and dependability, fulfilling the overarching aim of accelerat-
ing semi-automatic assessment in an efficient and dependable manner.

5.4 Hardware Software Mapping

Athena and Artemis are designed to function efficiently in a distributed com-
puting environment, particularly suited for large educational institutions. As
exemplary depicted in Figure 5.5, the Artemis Application Server, Athena
Assessment Service, and Ré€D Playground Application Server are deployed
on the computing infrastructure provided by the Technical University of Mu-
nich.

«infrastructure» cinfrastructure»
LLM Provider Data Center University Data Center
«interface» «component»
Large Language El S Athena : El
Model Assessment Service
A
---------------- Jom e e e ee e
«component» «component»
Artemis gl R&D Playground $:|
Application Server Application Server
N N
«device» «device»
Tutor Machine Researcher Machine
«component» «component»
Artemis $:| R e “--1---1 R&D Playground E
Application Client Application Client

Figure 5.5: UML Deployment Diagram for the Hardware-Software Mapping.

39

CHAPTER 5. SYSTEM DESIGN

The tutor interacts with the Artemis Application Server via a personal
computer, gaining access through the Artemis Application Client. Similarly,
the researcher employs another personal computer for interfacing with the
RE&D Playground Application Client. It is crucial to note that the Large
Language Model service, a cornerstone for feedback generation, resides on
a third-party cloud provider. This cloud-based service is connected to the
Athena Assessment Service, providing the necessary computational power.
Eventually, the LLMs can be hosted on the same infrastructure as the Athena
Assessment Service if the computational power is sufficient.

40

Chapter 6

Object Design

This chapter delineates the object design in the solution domain, describing
the seamless integration of the system architecture illustrated in Chapter 5
with the Artemis learning platform. The focus here is on the Athena As-
sessment Service, which acts as the interface for modules such as the LLM
modules for text and programming exercises. We also elaborate on the re-
search and development environment established to facilitate future work.

6.1 Athena Assessment Service

The Athena Assessment Service serves as the cornerstone for integrating
various feedback generation modules for different exercise types. It defines a
standardized interface that each module must implement to ensure compat-
ibility with Artemis. Figure 6.1 depicts a simplified UML Class Diagram of
this interface. The complete interface definition, along with relevant docu-
mentation, resides in the Athena repository'.

«interface»
Module
«interface»

provideConfigSchema() ModuleConfiguration
receiveSubmissions() = |-------- >
selectSubmission() getJsonSchema()
processincomingFeedback() parseJsonObject()
suggestFeedback()
evaluateFeedback()

Figure 6.1: UML Class Diagram for the Module Interface. (Simplified)

"https://github.com/lslintum/Athena

41

https://github.com/ls1intum/Athena

CHAPTER 6. OBJECT DESIGN

The interface encompasses the following methods:

e receiveSubmissions(): Accepts assessment data, including exercises
and submissions, allowing modules to prepare for the feedback genera-
tion process.

e selectSubmission(): Selects a submission from the received data for
generating feedback. This selection could be guided by various metrics,
such as information gain or choosing a submission with pre-generated
feedback suggestions.

e processIncomingFeedback(): Processes feedback from the Artemis
system, allowing the module to learn and adapt its feedback generation
process.

e suggestFeedback(): The core method that generates and returns feed-
back suggestions for a given submission.

e provideConfigSchema() (Optional): Delivers a JSON schema for dy-
namic module configuration.

e cvaluateFeedback() (Optional): Provides metrics for evaluating the
generated feedback.

6.2 Athena: Text LLM Module

The Text LLM Module aims to automate the feedback generation process for
text exercises in the Artemis platform. Its operation pipeline is illustrated
by the UML Activity Diagram shown in Figure 6.2. We detail the pipeline’s
steps in Section 6.2.1, and follow up with the process of generating evalu-
ations in Section 6.2.2 for automatic evaluation using the LLM-as-a-judge
methodology [ZCST23].

6.2.1 Generating Feedback Suggestions

The Text LLM Module employs a basic three-step workflow when interact-
ing with LLMs: Format, Predict, and Parse, as previously described in Sec-
tion 2.3.3. First, a prompt is formatted to provide the LLM with a rich
context for generating relevant feedback suggestions. The elements that can
be incorporated into the prompt, next to the sentence numbered submis-
sion, include the problem statement, example solution, grading instructions,
maximum points, and bonus points. However, it is essential to note that

42

6.2. ATHENA: TEXT LLM MODULE

due to the LLM’s token limit, not all elements can be included at all times.
Specifically, the total token count, including the expected output, should not
exceed 4096 tokens in the case of GPT-3.5-Turbo. For reference, the median
submission length for text exercises in Artemis is 726 characters (~ 180 to-
kens) with the 95th percentile at 2170 characters (~ 542 tokens, in common
English text), as detailed in Figure A.5.

Configure Sentence Add Sentence Create
LLM Tokenization Numbers Prompt Input
Omit Long
Features
. Formatted LLM | Completion
Prompt Completion Result

—
| Convert To Parse
Feedback Suggestion Index Range Feedback

Figure 6.2: UML Activity Diagram for the Text LLM Module.

Prepare
Prompt

Prompt Input

To address the token limit constraint, the module adopts a strategy where
it first omits the problem statement, followed by the example solution, and
finally the grading instructions until the total token count is within accept-
able limits. Once the prompt, as seen in Figure 6.3, is successfully formatted
and its length verified, it is passed to the LLM, which then returns a plain
text completion.

The completion is subsequently parsed into feedback suggestions. This
parsing process is either done through function calling if supported by the
LLM, or through JSON parsing. The resulting feedback suggestions reference
specific sentence ranges within the student’s submission. Next, we convert
these sentence numbers to index ranges within the submission text characters,
as required by Artemis.

The entire sequence of actions for generating feedback suggestions is de-
picted in Figure 6.2. This design ensures that the model gets as much context
as possible to generate relevant feedback suggestions, while also adhering to
the LLM’s token limit.

43

w

10
11
12
13
14
15
16
17

w

CHAPTER 6. OBJECT DESIGN

System Message

You are an Al tutor for text assessment at a prestigious
university .

Task

Create graded feedback suggestions for a student’s text
submission that a human tutor would accept. Meaning, the
feedback you provide should be appliable to the submission
with little to no modification.

Style
1. Constructive, 2. Specific, 3. Balanced, 4. Clear and
Concise, 5. Actionable, 6. Educational, 7. Contextual

Problem statement
{problem statement}

Example solution
{example_solution}

Grading instructions
{grading_instructions}
Max points: {max points}, bonus points: {bonus_points}

Human Message

Student s submission to grade (with sentence numbers <
number >: <sentence >):

99999

{submission}
9999 9

Figure 6.3: Prompt for Generating Feedback Suggestions for Text Exercises. The
highlighted sections are placeholders for the respective elements.

6.2.2 Generating Evaluations

To facilitate an automatic evaluation of the feedback suggestions, in Chap-
ter 7, the Text LLM Module integrates the LLM-as-a-judge methodology, a
technique adapted from recent research [ZCS*23]. The methodology lever-
ages a strong LLM, such as GPT-4, to approximate human preferences.

44

(@)

10
11
12
13
14
15

6.2. ATHENA: TEXT LLM MODULE

System Message

You are now an evaluator for feedback accuracy generated by
a machine—learning system.

Task

Your task is to estimate if a human tutor would accept or
reject the feedback suggestion and how much modification is
needed to make the feedback useful.

Score Criteria

Accept feedback that is useful to the tutor, meaning that
it can be applied to the submission with minor or no
modification. Our goal is to reduce the workload of tutors
and reduce their cognitive load. Reject feedback that is
not useful and would burden the tutor.

Put the focus on the description of the feedback, the title
is optional. The ‘line_start ‘ and ‘line_end ‘ should make
sense with respect to the submission but do not need to be
exact. Credits should make sense with respect to the
feedback and the submission but also do not need to be
exact.

Submission (with sentence numbers <number>: <sentence>):
{submission}

Example (Human) Feedback:
{true_feedbacks}

Human Message

Model Output:
{predicted_feedbacks}

Figure 6.4: Prompt for Generating Evaluations for Text Exercises. The high-
lighted sections are placeholders for the respective elements.

45

CHAPTER 6. OBJECT DESIGN

We use this method to assess the applicability, i.e. accuracy, of the gen-
erated feedback. In this thesis, we define accuracy as the likelihood that a
human tutor would accept a feedback suggestion with minimal or no modi-
fications. This evaluation mechanism is critical for validating the efficacy of
the system and iteratively refining its performance.

The evaluation process follows the established format, predict, and parse
workflow. A specialized prompt is constructed, which includes the student’s
submission annotated with sentence numbers, the original feedback provided
by human tutors as a gold standard, and the machine-generated feedback
suggestions. The prompt used for this task is detailed in Figure 6.4. Upon
receiving the formatted prompt, the LLM produces a completion that cate-
gorizes each feedback suggestion based on its acceptability and the degree of
modification required for its utility.

The output from the LLM is then parsed into a structured format. This
format contains a list of feedback suggestions, each tagged with an identi-
fier, an accepted or rejected label, and the level of modifications needed —
categorized as no, minor, or major. Additionally, the output also includes
the reason for the evaluation as reflection step. Overall, this evaluation out-
put serves as an invaluable resource for both system diagnostics and future
research, offering insights into the specific strengths and weaknesses of the
automated feedback generation mechanism.

6.3 Athena: Programming LLM Module

The Programming LLM Module navigates the complex landscape of pro-
gramming exercises, which are inherently more complex than text exercises.
This complexity stems from multifaceted problem statements, extended grad-
ing instructions, and multiple submission files that form a complete code
repository. The module’s design adapts the approach from text exercises to
accommodate these complexities. This detailed operation pipeline is illus-
trated as UML Activity Diagram in Figure 6.5.

To distill relevant information for feedback generation, the Programming
LLM Module introduces two critical steps: Split Problem Statement By File
and Split Grading Instructions By File. These steps utilize a LLM to restruc-
ture the general problem statement and grading instructions into file-specific
variants. The restructured versions serve as concise context for the feedback
generation step, focusing on the files altered by students. This is achieved
through specialized prompts, as outlined in Figures 6.6 and 6.7, which guide
the LLM to produce file-specific problem statements and grading instructions

46

6.3. ATHENA: PROGRAMMING LLM MODULE

Configure
LLM

Split Problem Statement By File

Diff Changed LLM Parse File Problem Diff Changed LLM Parse File Grading
Files Completion Statement Files Completion Instructions
too long or too long or

should run
Format Splitting
Prompt
too short too short

Split Grading Instructions By File

should run
File Problem
Statement

File Grading
Instructions

Generate Feedback Suggestions

Diff File Add Submission Create Prompt Omit Long Format
Changes Line Numbers Input Features Prompt '
should
Feedback Add File Parse LLM un :
Suggestion Path Feedback Completion H
too long :

B ———— A |

Figure 6.5: UML Activity Diagram for the Programming LLM Module.

changedsubmission file .

based on the repository diffs> between the template, solution, and student
submission.

For the actual feedback generation step, Generate Feedback Suggestions,
the module operates on a per-file basis, ignoring context of other files. To
manage a large number of changed files, the module adopts a heuristic ap-
proach to prioritize files more likely to require feedback. This is determined
by analyzing repository diffs, the programming language used, and file exten-
sions. The number of files to generate feedback for is limited, arbitrarily, to
25. Additionally, if the general problem statement and grading instructions
are sufficiently short, less than 250 tokens, the module includes them in their
entirety to preserve context.

The prompt for generating file-specific feedback, as shown in Figure 6.8,
integrates multiple elements: the file-specific problem statement, grading
instructions, repository diffs, and the student’s submission file annotated
with line numbers to reference. This prompt equips the LLM with a rich
context for generating feedback suggestions for programming exercises.

In summary, the Programming LLM Module’s design ensures a context-
aware feedback generation process per-file. The module adapts to the com-
plexities of programming exercises while aiming to retain the critical elements
within the input context.

’https://git-scm.com/docs/git-diff

47

https://git-scm.com/docs/git-diff

w

N OO W N

O o

10

CHAPTER 6. OBJECT DESIGN

System Message

You are an Al tutor for programming assessment at a
prestigious university.

Task

Restructure the grading instructions by student changed
file to show relevant information for each file to the
tutor. Make it as easy as possible for the tutor to grade
the assignment when looking at the changed file. Some
instructions may be relevant for multiple files.

Human Message

Grading instructions:
{grading_instructions}

Changed files from template to sample solution:
{changed files_from template_to_solution}

Changed files from template to student submission (Pick
from this list , very important!):

{changed _files_from_template_to_submission}

Grading instructions by file:

Figure 6.6: Prompt for Splitting the Grading Instructions by File for Program-
ming Exercises. The highlighted sections are placeholders for the
respective elements.

48

w

N OO W N

O o

10

6.3. ATHENA: PROGRAMMING LLM MODULE

System Message

You are an Al tutor for programming assessment at a
prestigious university.

Task

Restructure the problem statement by student changed file
to show relevant information for each file to the tutor.
Make it as easy as possible for the tutor to grade the
assignment when looking at the changed file. Some parts of
the problem statement may be relevant for multiple files.

Human Message

Problem statement:
{problem statement}

Changed files from template to sample solution:
{changed files_from template_to_solution}

Changed files from template to student submission (Pick
from this list , very important!):

{changed _files_from_template_to_submission}

Problem statement by file:

Figure 6.7: Prompt for Splitting the Problem Statement by File for Program-
ming Exercises. The highlighted sections are placeholders for the
respective elements.

49

w

10
11
12
13
14

15
16

17
18
19

20

w

CHAPTER 6. OBJECT DESIGN

System Message

You are an Al tutor for programming assessment at a
prestigious university.

Task

Create graded feedback suggestions for a student’s
programming submission that a human tutor would accept.
Meaning , the feedback you provide should be appliable to
the submission with little to no modification.

Style
1. Constructive, 2. Specific, 3. Balanced, 4. Clear and
Concise, 5. Actionable, 6. Educational, 7. Contextual

Problem statement
{problem statement}

Grading instructions

{grading_instructions}

Max points: {max points}, bonus points: {bonus_points} (whole
assessment , not just this file)

Diff between solution (deletions) and student’s
submission (additions):
{solution_to_submission_diff}

Diff between template (deletions) and student’s
submission (additions):
{template_to_submission_diff}

Human Message

Student s submission file to grade (with line numbers <
number >: <line >):

99999

{submission file}

99999

Figure 6.8: Prompt for Generating Feedback Suggestions for Programming Ex-
ercises. The highlighted sections are placeholders for the respective
elements.

50

6.4. RESEARCH AND DEVELOPMENT ENVIRONMENT

6.4 Research and Development Environment

The Research and Development (R&D) Environment, or also R&D Play-
ground, serves as an instrumental platform for rapid experimentation and
evaluation in the realm of automated feedback generation. This environment
serves as a multi-faceted tool, comprising three main components: module
configuration, module requests, and evaluation management.

6.4.1 Module Configuration

The R&D Playground introduces a dynamic configuration mechanism for
feedback generation modules. Each module can provide a JSON schema that
outlines its configuration parameters, which the Playground renders into a
user interface using react-jsonschema-form?®, an example for the Text LLM
Module is illustrated in Figure 6.9. This configuration is incorporated into
the request header when the Athena Assessment Service is invoked, enabling
dynamic adjustments to module behavior. This feature paves the way for
quick, iterative development and experimentation, an essential aspect for
improving automated feedback processes.

6.4.2 Module Requests

The Playground also features a request mode, providing a convenient way
for testing individual module requests. Users can select between two types of
datasets: example data for quick setup and evaluation data for a more real-
istic setup. The interface displays both the request and response with all the
necessary detail views, as for example seen in Figure 6.10, offering a simple
way to understand the system’s inner workings. This mechanism accelerates
the debugging and testing processes, streamlining the development pipeline.

6.4.3 Evaluation Management

Transitioning from module testing to systematic evaluation is seamless, due
to the Playground’s evaluation mode. Here, researchers can define and con-
duct experiments on different module configurations in parallel.

Define Experiment

Researchers have the liberty to design experiments by selecting the exercise
type, exercise and submission data for training and evaluation, and whether

3https://github.com/rjsf-team/react-jsonschema-form

51

https://github.com/rjsf-team/react-jsonschema-form

CHAPTER 6. OBJECT DESIGN

or not to enable automatic evaluation, as seen in Figure 6.11. The exercise
configuration can be exported and imported, offering a persistent research
setup. Once the settings are locked in, the stage is set for the experiment.

Configure Modules

Prior to conducting an experiment, researchers configure the modules in-
volved. These configurations are experiment-agnostic, allowing for their reuse
across different experimental setups. The Playground’s Ul for configuring the
modules can be seen in Figure 6.12.

Conduct Experiment

The actual experiment takes place within a multi-column interface. It dis-
plays the exercise details, tutor feedback, and module results, facilitating a
side-by-side comparison. The UI of the exercise details and tutor feedback
is shown in Figure 6.13. For text exercises, the feedback suggestions are
displayed in the text submission itself, as seen in Figure 6.14. Similarly, for
programming exercises, an integrated code editor enables users to navigate
through inlined feedback within code files, as seen in Figure 6.15. The envi-
ronment supports the manual rating of feedback suggestions and the export
of experiment data for further analysis.

52

6.4. RESEARCH AND DEVELOPMENT ENVIRONMENT

e 1)
Enable debug mode.
] Debug
Approach
This approach uses a LLM with a single prompt to generate feedback in a single step.
Max Input Tokens
Maximum number of tokens in the input prompt.
3000
Model
OpenAl v
OpenAl
OpenAl LLM configuration.
OpenAlModel
The name of the model to use.
azure_openai_gpt-35-0613 M
Max Tokens
The maximum number of tokens to generate in the chat completion.
The total length of input tokens and generated tokens is limited by the model's context length. Example Python code for counting tokens.
1000
Temperature
What sampling temperature to use, between 0 and 2. Higher values like 0.8 will make the output more random, while lower values like 0.2 will make it more focused and deterministic.
We generally recommend altering this or “top_p* but not both.
0
Top P
An alternative to sampling with temperature, called nucleus sampling, where the model considers the results of the tokens with top_p probability mass. So 0.1 means only the tokens
comprising the top 10% probability mass are considered.
We generally recommend altering this or * temperature® but not both.
1
Presence Penalty
Number between -2.0 and 2.0. Positive values penalize new tokens based on whether they appear in the text so far, increasing the model's likelihood to talk about new topics.
ee more information about frequency and presence penalties.
0
Frequency Penalty
Number between -2.0 and 2.0. Positive values penalize new tokens based on their existing frequency in the text so far, decreasing the model's likelihood to repeat the same line verbatim.
See more information about frequency and presence penalties.
o
Generate Suggestions Prompt
Features available: {problem_statement}, {example_solution}, {grading_instructions}, {max_points}, {bonus_points}, {submission}
Note: {problem_statement}, {example_solution}, or {grading_instructions} might be omitted if the input is too fong,
System Message
Message for priming Al behavior and instructing it what to do.
1 You are an AT tutor at a prestigious university tasked with grading and providing high quality feedback to text assignments.
2
3 VERY IMPORTANT: Effective feedback for text assignments should be:
4 1. Constructive, 2. Specific, 3. Balanced, 4. Clear and Concise, 5. Actionable, 6. Educational, 7. Contextual
5
6 Ignore all remarks about plagiarism.
Human Message
Message from a human. The input on which the Al is supposed to act.
1 Problem statement:
2 {problen_statement}
3
4 Example solution:
5 {example_solution}
6
7 Grading instructions:
8 {grading_instructions}
9 Max points: {max_points}, bonus points: {bonus_points}
10
11 Student's submission to grade (with sentence numbers <number>: <sentence>):
12 {submission}
13
- J

Figure 6.9: Module Configuration UI of the R&D Playground for the Text LLM
Module. (Screenshot)

53

CHAPTER 6. OBJECT DESIGN

from Athena

F k Sugg

Request a list of feedback suggestions from Athena for the selected submission. The LMS would usually call this when a tutor starts grading a submission. You should get a list of all submissions that
are not graded yet. The matching module for the exercise will receive the request at the function annotated with @feedback_provider.

Exercise

4160 text: HO4EO1 Coupling and Cohesion (S521) N
Submission

796213 - Coupling evall between ithin one system. - Cohesion e v

¥ Exercise Detail
3 Points and 0 Bonus Points.
¥ Problem Statement

Explain the difference between coupling and cohesion. Why are these terms important in
‘system design? Provide an example.

Requirement: Use your own words and your own example and do not just copy the
lecture slides nor internet sources! Limit yourself to around 250 words

» Grading Instructions
» Example Solution
¥ Submission

1 - Coupling cvuates dependency betueen classs within oe systen.
:

3~ Coneston evauates dependency between mulipte subsystens.

5 They are isportant teras since couling and cahesion are gools for & good systen design that is Less complex while chanes are feasible.

7 ro istane, a0 e sevice syt s one suysten T en prsts 1 ne sbsstn o e geaions, Wb sch syt s oy e

Closely connected (high cohesion). Whereas, both subsysteas are loosely connected (10w coupling). This allows individual upgradations possible for either systen
with mininal effect to the other. Within each subsysten, functions work smoothly and have appropriate triggers.

Response

Used modul

module_text_lim
Status code:
200

¥ Meta:

"id": 1694178593052000,

"title": "Assessment of the Difference between Coupling/Cohesion",

"descriptinn" "You correctly explained the difference between coupling and cohesion, well done!",
“credits
"grading_ mstrucnan id": null,
"meta”: {},
“exercise_id": 4160,
“submission_id": 796213,
"index_start": o,
“index_end": 128,

“type
-issugnestian". true

"id": 1694178593052001,

"title": "Assessment of the Explanation why Coupling/Cohesion are important",
“description®: "You correctly explained why coupling and cohesion are important, well don
“credits": 1,

“grading_instruction_id": null,

“me

vindex_end*: 266,
“type
“isSuggestion®: true

"id": 1694178593052002,

"title": "Assessment of the Example",
“description”: "Great example, well done!"
“credits": 1,

"grading_instruction_id": null,

"meta”
"exercise_id": 4160
“submission_id": 796213,
index_start": 268,
“mdex,en : 765,

a “text*,
'issuawestian": true

¥ Submission with Feedback Suggestions

1 - Coupling evaluates dependency between classes within one systen.
2
3 - Cohesion evaluates dependency between multiple subsystems.

References 0-128

of the Dif tion
1P Suggestio

explained the dif ing and cohesion, well done!

4
S They are important terms since coupling and cohesion are goals for a good systen design that is less complex while changes are feasible.

References 130-266

D planation why i Suggestion
plained why coupling and cohesi , well done!

6

7 For instance, an insurance service system has one subsystem for client portals and one subsystem for internal operations. Within each subsystem, its components are
closely connected (high cohesion). Whereas, both subsystems are loosely connected (low coupling). This allows individual upgradations possible for either system
with minimal effect to the other. Within each subsystem, functions work smoothly and have appropriate triggers.

References 268-705

Assessment of the Example Suggestion

""" Great example, wel done!

Request feedback sugge:

Figure 6.10: Module Requests Ul of the R&D Playground for Feedback Sugges-
tions from Athena. (Screenshot)

o4

6.4. RESEARCH AND DEVELOPMENT ENVIRONMENT

Define Experiment Export Import
Execution Mode
Batch mode (all submissions at once) v

Run automatic evaluation (if available, can be costly)

Exercise Type

text v
Exercise

4160 text: HO4E01 Coupling and Cohesion (SS21) ~

» Exercise Detail

Submissions
Enable training data
Select © random 25 submissions
O next

Move 25 to Training - Move 25 to Evaluation > ¢ Move 25 to Excluded Move 25 to Evaluation > ¢ Move 25 to Excluded < Move 25 to Training
Excluded (1187 Submissions) Training (50 Submissions) Evaluation (25 Submissions)
Submissions that are not used in the experiment. Sent for training before running evaluation. Run the experiment on the evaluation submissions.
» 1187 Submissions » 50 Submissions » 25 Submissions

Figure 6.11: Define Experiment Ul of the R&D Playground. (Screenshot)

Configure Modules Export Import Prev m
Configuration 1 = Configuration 2 «
Approach 1 You are an AI tutor at a prestigious university tasked with grading
and providing high quality feedback to text assignments.
2
This approach uses a LLM with a single prompt to generate feedback in a single step. 3 VERY IMPORTANT: Effective feedback for text assignments should be:

4 1. Constructive, 2. Specific, 3. Balanced, 4. Clear and Concise, 5.
Max Input Tokens Actionable, 6. Educational, 7. Contextual
5
Maximum number of tokens in the input prompt. 6 Ignore all remarks about plagiarism.
3000 Human Message
Message from a human. The input on which the Al is supposed to act.
Model
OpenAl v Problem statement:
{problem_statement}
Example solution:
OpenAl P

Grading instructions:
{grading_instructions}
Max points: {max_points}, bonus points: {bonus_points}

1
2
3
4
5 {example_solution}
6
7

OpenAl LLM configuration. s

9

OpenAlModel 10
The name of the model to use. 11 Student's submission to grade (with sentence numbers <number>:
<sentence>):
12 {submission}
azure_openai_gpt-4 v 13

Figure 6.12: Configure Modules UT of the R&D Playground. (Screenshot)

95

CHAPTER 6. OBJECT DESIGN

Conduct Experiment &xperiment Started Export

Import

Exercise Details

3 Points and 0 Bonus Points
¥ Problem Statement

Explain the difference between coupling and cohesion. Why are these terms important in
system design? Provide an example.

Requirement: Use your own words and your own example and do not just copy the
lecture slides nor internet sources! Limit yourself to around 250 words

¥ Grading Instructions

The students should convey that they have understood the difference of coupling
and cohesion

Grading criterion - "Plagiarism":

Feedback: "You plagiarised the slide. We noted it down and will reserve us the right
to exclude you from the bonus” (0 points) [Usage description: Apply this if the
student copy pasted the slides]

Grading criterion - "Assessment of the Difference between Coupling/Cohesion”:

Feedback:
well done!

"You correctly explained the difference between coupling and cohesion,
" (1 points) [Usage description: Apply this instruction if the student
correctly identified the difference between coupling and cohesion and explained it in

€« = Submission 2 of 25 (id: 795613) Enter Fullscreen Prev m

Tutor Feedback

1 DIFFERENCE:
2 Coupling: It is an indication of the relationship/dependency BETWEEN the

modules/subsystems. It is a concept of Inter-dependence.
3 Cohesion: It is an indication of the relationship/dependency WITHIN the
module/subsystem. It is a concept of Intera-dependence.

References 142-231
Assessment of the Difference between Coupling/Cohesion Grading Instruction

You correctly explained the difference between coupling and cohesion, well
done!

1P

4

5 IMPORTANCE: These terms are very important for a good system design, which
can be achieved by low coupling and high cohesion. They help in reducing
system complexity while allowing change.

References 397-459
Assessment of the Explanation why Coupling/Cohesion

are important
You correctly explained why coupling and cohesion are important, well done!

1P Grading Instruction

7 EXAMPLE:(It is not a clear example of a system or importance): an example
of importance can be: if a system has high coupling and low cohesion(Bad
Design), on making changes to a subsystem other subsystems will also be
affected, which leads to difficulties in maintainability and makes the
system

8 to be concrete let's take 4 systems: M1,2, M3, and M4. all these are highly
coupled, if we make a change in M1, it will lead to a change in M2, M3, and
M4 , making the system complex and difficult to maintain.

References 759-968

Accacemant af tha Fvamnla

Figure 6.13: Conduct Experiment Exercise Details and Tutor Feedback UI of

the R&D Playground. (Screenshot)

Conduct Experiment Experiment Started ~ Export Import & - Submission 2 of 25 (id: 795613) Enter Fullscreen Next
GPT-4 4 LLaMA-13b €
Show Config Hide Progress ¥ Show Config Hide Progress ¥
—~ Send Submissions ~ Send Submissions
@ S ©

(7) Sending Training Feedback
\Z/ sent feedback for training (50/50)

Generating Feedback Suggestions
Generated feedback suggestions (25/25)

(@) Finished

1 DIFFERENCE:

2 Coupling: It is an indication of the relationship/dependency BETWEEN the
modules/subsystems. It is a concept of Inter-dependence.

3 Cohesion: It is an indication of the relationship/dependency WITHIN the
module/subsystem. It is a concept of Intera-dependence.

References 12-269
Assessment of the Difference between Coupling/Cohesion Suggestion

You correctly explained the difference between coupling and cohesion, well
done!

1P

¥ Reject

module_text_1lm estimates accepted with minor modification

5 IMPORTANCE: These terms are very important for a good system design, which
can be achieved by low coupling and high cohesion. They help in reducing
system complexity while allowing change.

References 271-459

Sent 75 submissions

©) Sending Training Feedback

\Z/ sent feedback for training (50/50)
(3) Generating Feedback Suggestions
\2/ Generated feedback suggestions (25/25)

(@) Finished

1 DIFFERENCE:

2 Coupling: It is an indication of the relationship/dependency BETWEEN the
modules/subsystems. It is a concept of Inter-dependence.

3 Cohesion: It is an indication of the relationship/dependency WITHIN the
module/subsystem. It is a concept of Intera-dependence.

References 0-269
Difference between Coupling and Cohesion Suggestion

Good explanation of the difference between coupling and cohesion, however
the example could be more creative and explained in more detail.

05P

& Accept [RIEEEY module_text_11m estimates rejected with major modification

5 IMPORTANCE: These terms are very important for a good system design, which
can be achieved by low coupling and high cohesion. They help in reducing
system complexity while allowing change.

7 EXAMPLE: (It is not a clear example of a system or importance): an example
of importance can be: if a system has high coupling and low cohesion(Bad

Figure 6.14: Conduct Experiment Module Comparison UI of the R&D Play-

ground for a Text Module. (Screenshot)

56

6.4. RESEARCH AND DEVELOPMENT ENVIRONMENT

Conduct Experiment Experiment Started Export Import « Submission 10 of 10 (id: 721037) Enter Fullscreen Next
Tutor Feedback ChatGPT-3.5
O .classpath src/pgdp/collections/Priceable.java Show Config Hide Progress ¥
1 package pydp.collections; | ~ Send Submissions

[gitattributes \2 Sent 10 submissions

D gitignore 3 public interface Priceable {

: e (7 Generating Feedback Suggestions
) 4 int getPrice(); [\9 Generated feedback suggestions (10/10)
[-project 5 }
(3) Finished
v fa src 12 References
file:src/pgdp/collections/Priceable java_line:5
v @ pgdp 12 [.classpath src/pgdp/collections/Priceable.java
i i i i 1 package pgdp.collections; |
v @ collections 12 1P ::':::é"gd"’°°"e°"°"slpr'°eab'° lava [gitattributes , fecepe®
[Basketjava 5 correct! D) gitignore 3 public interface Priceable {
4 int getPrice();
[PenguinCust... 4 [.project
java_line:3-4
[PremiumPen... 1 v @ src 25
Priceable Suggestion
P ! [~ 1P . .
v m pgdp 2 Interface Priceable wurde inklusive der
[Productjava 1 v @ collections 25 abstrakten Methode richtig umgesetzt.

Basket.j... 9

[Penguin... 8

5 1
O premiu.. 4
[Product... 3

Figure 6.15: Conduct Experiment Module Comparison UI of the R&D Play-
ground for a Programming Module. (Screenshot)

o7

Chapter 7

Evaluation

This chapter focuses on the assessment of the LLM-based feedback genera-
tion system integrated into the Artemis learning platform. The evaluation
aims to quantify and understand the system’s performance across text and
programming exercises.

7.1 Design

Evaluating LLMs for specialized tasks, such as automated feedback genera-
tion in an educational context, is a non-trivial endeavor. These challenges
stem from multiple metrics that require consideration: quality, accuracy,
and coverage of the feedback suggestions. To navigate these complexities, we
employ a mixed-method approach.

For text exercises, we apply the LLM-as-a-judge methodology [ZCST23].
This approach leverages GPT-4’s capabilities to approximate human judg-
ment, thereby offering a scalable and explainable method for quality and
accuracy assessment. To cross-verify the results, we conduct a manual eval-
uation on a single exercise.

In contrast, for programming exercises, the LLM-as-a-judge method does
not easily translate due to the complexity of coding tasks. As a result,
manual evaluation becomes indispensable for these exercises. Due to time-
constraints, we did not conduct manual evaluation for programming exer-
cises. However, we conduct a quantitative analysis of the generated feedback
suggestions, focusing on metrics such as token usage, generation time, and
the number of generated feedback suggestions.

Experiments are conducted in a research and development environment,
as previously detailed in Section 6.4. Metrics such as token usage, generation
time, the number of generated feedback suggestions, and their accuracy are

o8

7.1. DESIGN

rigorously tracked. The emphasis on accuracy aims to measure how readily
the LLM-generated feedback can be applied to student submissions without
extensive modifications.

7.1.1 Data Selection

For empirical validation, we selected a subset of previously conducted text
and programming exercises from the Technical University of Munich’s in-
stance of the Artemis Learning Management System. The data for this
study was acquired through an anonymized database dump provided by the
Artemis team, snapshot dated March 29, 2023.

Text Exercises

We select data from Artemis courses with the lowest rates of empty feedback
for text exercises, as detailed in Table 7.1. The reason for the empty feedback
is unclear, but it is likely due to the deletion of structured grading instructions
associated with the feedback.

Feedback
ID Course Semester Total Empty (%)
29 Introduction to Software Engineering SS19 92411 45.37
30 Project Organization and Management SS19 5432 45.43
41 Patterns in Software Engineering WS19/20 131 76.34
48 Introduction to Software Engineering SS20 77629 18.17
67 Networks for Monetary Transactions SS20 2754 97.02
88 Patterns in Software Engineering WS20/21 6177 19.48
121 Introduction to Software Engineering SS21 123919 0.28
139 Advanced Topics of Software Testing SS21 5766 1.23
167 Functional Programming and Verification =~ WS21/22 9805 0.44
169 Introduction to Software Engineering SS22 45546 1.03

Table 7.1: Empty Feedback Rates in Artemis Courses for Text Exercises as of
March 29, 2023. The first block details courses used by Bernius [Ber22]
for validation. The second block lists additional suggested courses for
future evaluation. A gray background indicates a low empty feedback
rate.

For our evaluation, we focus on the “Introduction to Software Engineer-
ing” course of the summer semester 2021. It has the lowest empty feedback
rate of all courses, making it an ideal candidate for comparing the LLM-
generated feedback against actual tutor feedback. Within this course, we

99

CHAPTER 7. EVALUATION

select five exercises for evaluation, as depicted in Table 7.2. Note that, for
simplicity and due to time constraints, the main focus of this evaluation is
on the “H04E01 Coupling and Cohesion” exercise. The remaining exercises
are automatically evaluated to provide insight into a broader perspective on
the LLM’s performance across different exercises within the selected software
engineering course.

ID Exercise Title Submissions
4082 HO1EO02 Change in Software Development 1361
4101 HO3EO03 Bumpers Visionary Scenario 1284
4160 HO04EO01 Coupling and Cohesion 1260
4162 HO04EO03 Design Goal Trade-offs 1222
4238 HO6EO04 Inheritance vs. Delegation 1135

Table 7.2: Text Exercises Selected for Evaluation from “Introduction to Software
Engineering” of summer semester 2021. The gray background indi-
cates our selection for manual evaluation.

Programming Exercises

The selection of programming exercises for evaluation was guided by multiple
criteria, such as the programming language used, the volume of manual feed-
back provided, and a high incidence of referenced feedback. The exercises
chosen for this study are detailed in Table 7.3.

Due to time constraints, this research focuses on the “Shoppende Pin-
guine” exercise, which is part of the course “Nachklausur zum Praktikum:
Grundlagen der Programmierung WS20/217. It is worth noting that this
exercise has an atypically high rate of referenced feedback; almost all feed-
back is referenced, diverging from the Artemis average of 11.5% as shown in
Figure A.12. Written in Java, the exercise aligns with the most commonly
used programming language on Artemis, as indicated in Figure A.9. This
focus is further justified by the manageable number of submissions for the
exercise, since the current generation approach is rather costly.

The remaining exercises listed in Table 7.3 serve as promising candidates
for future research and subsequent evaluation. They are selected based on the
criteria mentioned above, but due to time-constraints, we did not evaluate
them in this study.

60

7.1. DESIGN

ID Exercise Title Language Exam Submissions
3184 Objektorientierung mit Verkehrsmitteln Java Yes 755
3185 Objektorientierung mit Transportmitteln Java Yes 740
3908 Aktor-Threads Java Yes 81
3913 Shoppende Pinguine Java Yes 97
3914 Konsumierende Eisbaeren Java Yes 102
2104 HO3 - Grafikspeicher C No 706
2111 HO2 - Festkommarechnung C No 835
2610 PO1 - Raycasting mit Festkommazahlen Assembly No 806
3782 ASM Backpack Assembly Yes 597
3187 P02 - Taschenrechner VHDL No 693
3781 Ampelsteuerung VHDL Yes 621
6344 Textline Editor OCaml Yes 214
6433 Interpreters OCaml Yes 93
3693 Shapes Haskell Yes 270
3942 Expressions Haskell Yes 213
4864 Free Shipment Python Yes 113
4896 Free Delivery Python Yes 113

Table 7.3: Potential Programming Exercises Selected for Evaluation. The
gray background indicates our selection for evaluation due to time-
constraints.

7.1.2 Experiments

The evaluation employs a rigorous experimental methodology designed to
address specific hypotheses about the LLM-based feedback generation sys-
tem’s performance. We conducted a combination of four experiments for text
exercises (T1-4) and one experiment for programming exercises (P1).

Text Exercises

For text exercises, the first experiment (T1) aims to optimize the prompt for
the LLM-based system. The subsequent experiments (T2-4) focus on model
comparison, method validation, and exercise comparison, respectively.

Experiment T1: Prompt Optimization. This experiment is dedicated
to optimizing the prompts that guide the LLM in generating feedback for text
exercises. Specifically, we focus on the “HO4E01 Coupling and Cohesion” ex-
ercise for this purpose. We utilize two versions of the exercise: one containing
the original structured grading instructions (SGI) and another with simplified

61

CHAPTER 7. EVALUATION

grading instructions. The simplification process involves GPT-4 summariz-
ing the original grading instructions. This step is crucial as it prevents the
LLM from merely copying the detailed grading instructions, thus enabling a
more nuanced evaluation of prompt performance.

Five prompt variants are created for this experiment. The first variant
is the original prompt used during the system’s development phase. The
second variant is meticulously crafted, adhering to OpenAl’s best practices
guidelines’; this variant is further illustrated in Figure 6.3. The remain-
ing three variants are derivatives of the second prompt, integrating subtle
modifications in context cues.

We perform the evaluation with GPT-3.5-Turbo for each prompt on a
fixed small sample of 25 randomly selected submissions of the “HO4E01 Cou-
pling and Cohesion” exercise for both exercise variants.

Experiment T2: Model Comparison. Building upon the optimized
prompt from Experiment T1, the second experiment seeks to compare the
performance of different LLMs, namely GPT-3.5-Turbo, GPT-4, and LLaMA-
13b-Chat in generating feedback for the “HO04E01 Coupling and Cohesion”
exercise. Note that GPT-3.5-Turbo and GPT-4 use structured output pars-
ing through OpenAT’s function calling, and LLaMA-13b-Chat uses an unop-
timized custom parsing approach, injecting formatting instructions into the
prompt. The OpenAl models are deployed via Azure, whereas LLaMA-13b-
Chat is deployed through the cloud computing platform Replicate?.

We benchmark using a fixed, randomly selected sample of 100 submissions
due to the high computational cost of generating feedback suggestions and
automatically evaluating them with GPT-4 as a judge

Experiment T3: LLM-as-a-Judge Evaluation. This experiment is
geared towards cross-validating the estimated accuracy by the LLM-as-a-
judge methodology with manual evaluation. We use the automatic evaluation
results from the previous experiment (T2) for the GPT-3.5-Turbo model and
have one person that is also not an expert in software engineering, manually
rate the 303 feedback suggestions similarly how a tutor would.

The person is given each submission, with the feedback suggestions and
the previous tutor’s feedback. The instructions for the acceptance and re-
jection of the feedback suggestions are similar to the prompt used for the
LLM-as-a-judge, as detailed in Figure 6.4. The non-expert is asked to rate

https://platform.openai.com/docs/guides/gpt-best-practices
’https://replicate.com

62

https://platform.openai.com/docs/guides/gpt-best-practices
https://replicate.com

7.2. OBJECTIVES

the feedback suggestions as either “Accept” or “Reject” based on the instruc-
tions.

Experiment T4: Exercise Comparison. This experiment evaluates the
LLM-generated feedback across multiple text exercises, as listed in Table 7.2.
For “HO04E01 Coupling and Cohesion” we use the previous results of experi-
ment T2, and for the remaining exercises we select a random sample of 100
submission within each exercise. We are using GPT-3.5-Turbo for this ex-
periment, since it seems to be the most cost-effective model for the feedback
generation task when dealing with thousands of submissions at the moment.

Programming Exercises

Due to time-, cost-, and usability-constraints we only conduct one experiment
for model comparison.

Experiment P1: Model Comparison. In this experiment, we focus on
the “Shoppende Pinguine” exercise, comparing GPT-3.5-Turbo and GPT-4.
Taking what we have learned though experiment T1, we crafted the prompts
for this experiment similarly to Figure 6.3. For splitting the problem state-
ment and grading instructions by file, we use the prompts as seen in Figure 6.7
and Figure 6.6, respectively. For the generation process, we use the prompt
detailed in Figure 6.8.

For benchmarking, we randomly select 48 submissions from the “Shop-
pende Pinguine” exercise. Due to the complexity of programming tasks, the
metrics monitored are limited to token usage, generation time, and the num-
ber of generated feedback suggestions. We do not evaluate accuracy and
quality.

7.2 Objectives

The objectives of this evaluation are designed to rigorously assess the perfor-
mance, scalability, and adaptability of the LLM-based feedback generation
system in the educational context of Artemis. These objectives are aligned
with our specific experiments for both text and programming exercises, de-
tailed previously in Section 7.1.2.

63

CHAPTER 7. EVALUATION

7.2.1 Text Exercises

For text exercises, the first objective aims to validate the research and devel-
opment environment’s capabilities for systematic iteration on feedback gener-
ation configurations. This is tied to Experiment T1 on Prompt Optimization.
The environment should demonstrate its effectiveness in identifying an op-
timal prompt that enhances both the quality and accuracy of the generated
feedback.

The second objective, corresponding to Experiment T2 on Model Com-
parison, aims to identify the most efficient, cost-effective, and accurate LLM
for deployment in a large-scale educational setting. The focus here is to pro-
vide actionable insights that balance generation time, computational costs,
and high feedback accuracy.

Experiment T3 aims to validate the LLM-as-a-judge methodology within
the research and development environment. It aims to substantiate that
LLMs can approximate human judgment for automatic evaluation, thereby
offering a scalable method for assessing the quality and accuracy of generated
feedback suggestions.

The final objective for text exercises associated with Experiment T4 is to
establish that the LLM-based system can generalize across different types of
text exercises. The system should demonstrate adaptability and flexibility
in accommodating diverse educational content and grading criteria.

7.2.2 Programming Exercises

The primary objective for programming exercises is centered around a rough
quantitative feasibility assessment through Experiment P1 on Model Com-
parison. This experiment deploys two LLMs, GPT-3.5-Turbo and the more
computationally demanding GPT-4, to investigate whether automated feed-
back generation for programming exercises can be viable. Specifically, the
focus is on optimizing a balance between computational cost and the volume
of feedback suggestions while maintaining a minimum threshold of educa-
tional value in the generated feedback. This evaluation serves as an initial,
foundational step to inform future research and evaluations on the scalability
and effectiveness of automated feedback in complex programming tasks.

7.3 Results

The subsequent sections present the empirical outcomes of the evaluation,
categorizing the results into text and programming exercises. These results,

64

7.3. RESULTS

devoid of interpretation at this stage, set the groundwork for subsequent
discussions of findings and limitations.

7.3.1 Text Exercises

Experiment T1: Prompt Optimization. The primary experiment fo-
cusing on prompt optimization yielded varying performance metrics across
the five different prompts tested. The most compelling result is observed for
Prompt 2 with Structured Grading Instructions (SGI), which demonstrated
the highest estimated accuracy of 83.3%, as seen in Table 7.4. Interestingly,
Prompt 4 without SGI scored an even higher estimated accuracy of 89.4%.
In total, three out of five prompts achieved a higher estimated accuracy with
summarized SGIs than with the original detailed SGIs while producing more
feedback suggestions with fewer tokens. Despite these results, we choose
to use Prompt 2 for the subsequent experiments due to having the highest
estimated accuracy with SGIs, which is more in line with the exercises on
Artemis and the original intent of the system.

Name SGI Tokens Feedbacks Est. Acc. (%)

R 1539 3.12 71.8%
P No 1274 4.32 50.0%
bromnt 2 Y 1549 3.12 83.3%
P No 1167 3.24 85.2%
promnt 3 Y 1484 3.04 81.6%
romp No 1155 3.72 74.2%
promnt 4 Y 1550 3.16 77.2%
P No 1178 3.40 89.4%
bromnt 5 Y 1587 3.16 79.7%
p No 1212 3.32 88.0%

Table 7.4: Comparative Analysis of Five Different Prompts in Experiment T1.
Results are segmented based on the inclusion (Yes) or exclusion (No)
of Structured Grading Instructions (SGI). Metrics include the aver-
age token usage, the average number of feedback suggestions pro-
duced, and the estimated accuracy as assessed by the LLM-as-a-judge
methodology.

65

CHAPTER 7. EVALUATION

Experiment T2: Model Comparison. In model comparison, GPT-4,
although computationally demanding, did not significantly outperform GPT-
3.5-Turbo in terms of estimated accuracy, scoring 80.1% and 82.2% respec-
tively. LLaMA-13b, however, lagged notably behind, achieving only 44.5%
estimated accuracy. As for generation speed, GPT-3.5-Turbo was the fastest,
clocking at 5.58 seconds per submission, followed by GPT-4 at 10.09 seconds,
and LLaMA-13b at 22.21 seconds. The results are summarized in Table 7.5.

Model Tokens Time (s) Feedbacks Est. Acc. (%)
GPT-3.5-Turbo 1522 5.58 3.03 82.2%
GPT-4 1406 10.09 3.32 80.1%
LLaMA-2-13b-Chat 2008 22.21 1.91 44.5%

Table 7.5: Comparative Analysis of LLMs in Experiment T2. Metrics include
average token usage, generation time in seconds, the average number
of feedback suggestions produced, and the estimated accuracy assessed
by the LLM-as-a-judge methodology.

Experiment T3: LLM-as-a-Judge Evaluation. In a manual evaluation
process for cross-validating the LLM-as-a-judge methodology, a non-expert
reviewed 303 pieces of feedback. The manual acceptance rate was 79.5%,
closely aligning with the LLM-as-a-judge’s 82.2%. Agreement between the
two evaluation methodologies was observed in 95% of the cases, strengthening
the credibility of the LLM-as-a-judge methodology.

Experiment T4: Exercise Comparison. In a broader check across mul-
tiple text exercises, the estimated accuracy ranged from 64.8% to 98.0%, with
the exercise “Design Goal Trade-offs” remarkably scoring 98.0%. This sug-
gests that the LLM-based feedback generation system can generalize well
across different types of text exercises within the same educational context.
Generation time and token usage varied across exercises, with all taking, on
average less than 2196 tokens and 10.24 seconds per submission. Results are
summarized in Table 7.6.

7.3.2 Programming Exercises

Experiment P1: Model Comparison. For the “Shoppende Pinguine”
programming exercise, as summarized in Table 7.7, GPT-4 generated almost
double the amount of feedback suggestions compared to GPT-3.5-Turbo,

66

7.4. FINDINGS

Exercise Title Tokens Time (s) Feedbacks Est. Acc. (%)
HO1E02 Change in Software Development 1522 5.58 3.03 82.2
HO3E03 Bumpers Visionary Scenario 1813 3.43 1.22 64.8
HO6E04 Inheritance vs. Delegation 2145 9.41 6.75 78.3
HO1EO02 Change in Software Development 2196 10.24 7.04 73.6
HO04E03 Design Goal Trade-offs 1961 8.30 3.01 98.0

Table 7.6: Comparative Analysis of Selected Text Exercises in Experiment T4.
Metrics include average token usage for feedback generation, com-
putational time in seconds required for each submission, the average
number of feedback suggestions produced, and the estimated accuracy
as assessed by the LLM-as-a-judge methodology.

with 18.70 and 10.81 respectively. However, this increase came at the cost
of significantly higher computational time, clocking at 160.85 seconds for
GPT-4 versus 57.08 seconds for GPT-3.5-Turbo. Surprisingly, considering
the number of feedback suggestions, the token usage was lower for GPT-4,
standing at 11409 as opposed to GPT-3.5-Turbo’s 12953 per submission.

Model Tokens Time (s) Feedbacks
GPT-3.5-Turbo 12953 57.08 10.81
GPT-4 11409 160.85 18.70

Table 7.7: Comparative Analysis of GPT-3.5-Turbo and GPT-4 in Experiment
P1. Metrics include the average token usage for each model, the com-
putational time in seconds required for feedback generation, and the
average number of feedback suggestions produced.

7.4 Findings

The evaluation reveals critical insights into the LLM-based feedback gen-
eration system’s performance, scalability, and adaptability within Artemis’
educational context.

7.4.1 Text Exercises

Prompt Optimization. The research and development playground proved
effective for prompt optimization, demonstrating that carefully engineered
prompts could significantly improve the estimated accuracy of feedback sug-
gestions. Prompts with the exercise using summarized structured grading

67

CHAPTER 7. EVALUATION

instructions surprisingly showed higher performance in some cases, challeng-
ing the assumption that detailed SGIs are always superior for feedback gen-
eration.

Model Comparison. GPT-3.5-Turbo emerged as the most efficient and
nearly as accurate as GPT-4, suggesting that the latter’s computational over-
head may not justify its use in this specific context. LLaMA-13b lagged
considerably, indicating that not all LLMs are equally suited for the task at
hand and need to be optimized.

Method Validation. The LLM-as-a-judge methodology successfully ap-
proximated human judgment, with a high degree of agreement between man-
ual and automated evaluations. This validates the methodology as a scalable
and reliable approach for quality and accuracy assessment.

Exercise Generalization. The system exhibited a high degree of adapt-
ability across different types of text exercises. However, the estimated ac-
curacy varied significantly, highlighting the importance of tailoring the sys-
tem to specific educational contexts and grading criteria. In our evaluation,
“Bumpers Visionary Scenario” achieved the lowest estimated accuracy of
64.8%, while on average, the system scored 79.38% over all exercises. This
finding underlines the system’s potential to generalize across different edu-
cational content.

7.4.2 Programming Exercises

Feasibility Assessment. While GPT-4 generated a significantly higher
number of feedback suggestions, it did so at a much higher computational
cost than GPT-3.5-Turbo. This calls into question the scalability of using
more advanced models for programming exercises, especially given that the
quality of these suggestions could not be evaluated due to time constraints.

7.5 Discussion

The experiments and results have unfolded several dimensions of the LLM-
based feedback generation system’s capabilities and limitations. This section
interprets these findings, linking them to the broader context of Artemis and
educational technology.

68

7.5. DISCUSSION

7.5.1 Text Exercises

Prompt Engineering. Prompt optimization emerged as a pivotal factor
for enhancing system performance. The experiment revealed that even minor
variations in the prompt could yield different outcomes. The use of summa-
rized SGIs achieving higher estimated accuracy in some cases suggests the
LLM’s ability to distill essential aspects of grading. This could be valuable
for Artemis when SGIs can be complex and lengthy.

Model Suitability. The model comparison experiment laid bare the trade-
offs between computational efficiency and performance. While GPT-4 didn’t
significantly outperform GPT-3.5-Turbo in accuracy, it was computationally
more demanding, raising questions about its practicality in large-scale de-
ployments within Artemis. This finding underscores the importance of a
sensible selection of LLMs tailored for specific educational settings.

Method Validation and Scalability. The LLM-as-a-judge methodology
offers a scalable avenue for system evaluation. Its high degree of agreement
with human judgment underlines its utility for initial quality assurance in
large-scale deployments. This method could also be integrated into Artemis
to assist in ongoing evaluations.

Generalization Across Exercises. The system’s ability to generalize
across different text exercises reaffirms its potential for broader applications
within Artemis. However, the variability in estimated accuracy suggests that
while the system is flexible, it may require specific tuning for different types
of exercises. To meet this need for customization, we could allow tutors
to configure custom instructions for the LLM-based system, similar to how

OpenAl is doing it with ChatGPT3.

7.5.2 Programming Exercises

Feasibility and Scalability. The single experiment for programming ex-
ercises revealed that while generating feedback is technically feasible, scala-
bility remains a concern. GPT-4’s higher computational demands and longer
generation times suggest that more optimized approaches are needed for prac-
tical deployments in Artemis, especially given the usually higher volume of
submissions in programming exercises in combination with the size of each
submission.

3https://openai.com/blog/custom-instructions-for-chatgpt

69

https://openai.com/blog/custom-instructions-for-chatgpt

CHAPTER 7. EVALUATION

7.5.3 Implications for Artemis

The findings offer actionable insights for the future development of Artemis.
The research and development environment’s effectiveness in prompt opti-
mization can serve as a blueprint for iterative enhancements. Moreover,
the LLM-as-a-judge methodology could become an integral part of Artemis’
semi-automatic assessment process, aiding in quality assurance. Finally, the
data on model efficiency and estimated accuracy could inform strategic deci-
sions on LLM deployments for both text and programming exercises within
Artemis.

7.6 Limitations

Limited Scope. The study’s scope was limited to one type of programming
exercise and a few text exercises with few randomly selected submissions,
constraining the generalizability of the findings. Future work could extend
the evaluation to a broader range of exercises and educational contexts with
representative samples of submissions.

Time and Computational Constraints. The constraints on time and
computational resources limited the depth of the experiments, particularly
for programming exercises. Future research should aim for more exhaustive
evaluations.

Quality Metrics. While estimated accuracy served as a quantitative met-
ric, qualitative aspects of the feedback were not evaluated. Additionally, we
only assessed the accuracy of whether the feedback was accepted with mi-
nor to no modifications. We did not account for the accuracy of the points
within the feedback and did not differentiate between points and feedback
text. Furthermore, we did not evaluate qualitative aspects of the feedback.
Future work could involve a comprehensive evaluation of feedback quality,
involving students and tutors.

LLM-as-a-Judge Methodology. While the LLM-as-a-judge methodol-
ogy showed a high degree of agreement with the human judgment of a non-
expert on a relatively small sample, it is still an automated method. The
actual quality of feedback suggestions may vary when evaluated by multi-
ple human assessors, especially those who are domain experts in software
engineering.

70

7.6. LIMITATIONS

Fixed Configuration. The experiments employed fixed configurations for
each LLM, which might not be optimal. For example, tuning hyperparam-
eters such as temperature, presence penalty, and frequency penalty could
potentially impact the quality and quantity of the generated feedback.

71

Chapter 8

Summary

In the following sections, the status of the thesis, significant conclusions, and
discuss potential directions for future work.

8.1 Status

Tables 8.1 and 8.2 show the status of the functional requirements for text
and programming exercises within the learning management context. For the
research and development context, an overview of the status of the functional
requirements is given in Table 8.3. We indicate the status of each functional
requirement with @ for realized, © for partially realized, and O for not real-
ized. We discuss the realized and open goals in the following sections.

Status Functional Requirement FR
[] Generate Feedback Suggestions FRT.1
o Review Feedback Suggestions FR T.2
O Learn from Feedback FRT.3
(] Link Structured Grading Instruction FR T4
) Handle Multiple Languages FR T.5

Table 8.1: Status of Functional Requirements for Text Exercises within the
Learning Management Context.

8.1.1 Realized Goals

We have realized most of the main goals of this thesis regarding the learn-
ing management context and the research and development context. The
following sections summarize the realized goals for each context.

72

8.1. STATUS

Status Functional Requirement FR
[] Generate Feedback Suggestions FR P.1
[] Review Feedback Suggestions FR P.2
0 Handle Multiple Programming Languages FR P.3
O Learn from Feedback FR P4
0 Link Structured Grading Instruction FR P.5
O Reference Test Results FR P.6
O Reference Build Outputs FR P.7

Table 8.2: Status of Functional Requirements for Programming Exercises within
the Learning Management Context.

Status Functional Requirement FR
) Use Multiple LLMs FR R.1
() Configure Feedback Generator FR R.2
O Evaluate Feedback Quality FR R.3
() Track Token Usage and Generation Time FR R.4
) Compare Modules FR R.5
) Define Experiment FR R.6
) Conduct Experiment FR R.7
() Rate Feedback FR R.8
(D) Automatic Evaluation FR R.9
() Import Configurations FR R.10
) Export Data FR R.11

Table 8.3: Status of Functional Requirements for the Research and Development
Context.

Learning Management Context

Text Exercises. We have developed a feedback generation module for text
exercises, as outlined in Section 6.2. This module effectively produces feed-
back suggestions, fulfilling the requirements detailed in FR T.1. Our eval-
uation, discussed in Chapter 7, confirms that the module generates feed-
back rapidly (NFRS), cost-effectively (NFR11), and accurately (NFR6) us-
ing GPT-3.5-Turbo. It also scales well to thousands of submissions (NFR10).
The system offers some multilingual support (FR T.2), particularly for lan-
guages that the LLM is trained on, although further enhancements can be
made. During the manual evaluation, we found that the LLM consistently
and accurately applies structured grading instructions (FR T.4). Addition-

73

CHAPTER 8. SUMMARY

ally, a collaborator has integrated the review feature for these feedback sug-
gestions into Artemis (FR T.2), ensuring seamless compatibility with our
module.

Programming Exercises. The feedback generation module for program-
ming exercises achieves the core objective, fulfilling FR P.1. This module
has been seamlessly integrated into Artemis through a review feature im-
plemented by a collaborator (FR P.2), enabling tutors to easily accept or
reject generated feedback suggestions. Although the module currently sup-
ports multiple file types and programming languages (FR P.3), it should be
considered with more care in future work. We observed that the system’s
ability to map structured grading instructions to specific code snippets is not
yet fully reliable (FR P.5). This limitation warrants further investigation and
refinement to enhance the module’s applicability and accuracy.

Research and Development Context

We successfully setup the research and development environment, covering
most of the functional requirements. It allows for the use of multiple LLMs
(FR R.1) and other configurable feedback generator settings (FR R.2). A
researcher can define an experiment (FR R.6) and subsequently conduct it
(FR R.7). While conducting an experiment, the researcher can compare
the result of multiple modules (FR R.5) and rate the feedback suggestions
(FR R.8) by either accepting them or rejecting them, similar to how a tutor
would. Additionally, we generate automatic ratings to gauge the system’s
accuracy for text exercises (FR R.9), although this is not yet implemented
for programming exercises. The environment also tracks token usage and
generation time (FR R.4). Moreover, it facilitates data and configuration
imports and exports (FR R.11, FR R.10) for enhanced reproducibility and
iterative development.

8.1.2 Open Goals

Some of our goals are not yet fully realized, primarily due to time constraints
and the complexity of the problem. In the following sections, we discuss the
open goals for each context.

Learning Management Context

Text Exercises. The feedback generation system does not yet include a
mechanism for learning from feedback (FR T.3). This capability could help

74

8.2. CONCLUSION

improve the system’s performance based on tutors’ past feedback. We would
have liked to explore this feature for GPT-3 and GPT-3.5-Turbo, as it gained
fine-tuning support just recently, but due to time constraints, we could not
do so in this thesis. Another open goal is full multilingual support (FR T.5).
While the system can generate feedback in languages the LLM is trained in,
it might still generate feedback in the wrong language. In the future, we
could adjust the system to only generate feedback in the language of the
submission.

Programming Exercises. Similar to text exercises, the system lacks a
learning mechanism (FR P.4). Additionally, the system’s ability to handle
multiple programming languages is partial and needs refinement (FR P.3).
The linking of structured grading instructions to specific code snippets is not
yet fully reliable (FR P.5), and other non-functional requirements such as
scalability (NFR10), cost-efficiency (NFR11), and feedback accuracy (NFR6)
need further investigation. The system does not yet reference test results (FR
P.6) or build outputs (FR P.7) when generating feedback, limiting its ability
to generate feedback suggestions that require such references.

Research and Development Context

The research environment does not yet provide a robust method for evaluat-
ing the quality of generated feedback (FR R.3). This evaluation is vital for
validating the system’s efficacy and should be incorporated in future work.
The ability to automatically rate feedback is partially implemented (FR R.9)
for text exercises but remains unaddressed for programming exercises due to
its associated complexity.

8.2 Conclusion

This thesis addressed the critical challenge of providing individualized, mean-
ingful feedback in large educational settings, specifically within the Learning
Management System (LMS) Artemis at the Technical University of Munich.
The primary contribution is developing and evaluating a feedback generation
system that leverages large language models to semi-automate the assessment
process for text and programming exercises. This system aims to enhance
both the quality of education for students and the efficiency of the grading
process for tutors.

The feedback generation system for text exercises has shown promise,
with LLMs such as GPT-3.5-Turbo generating rapid, cost-effective, and ac-

75

CHAPTER 8. SUMMARY

curate feedback. For programming exercises, the system successfully gener-
ates feedback suggestions but requires further evaluation and refinement. To
support ongoing research and development, we also established an environ-
ment that allows for the easy configuration of LLM modules, evaluation of
generated feedback, and tracking various performance metrics. This environ-
ment is the foundation for future improvements and research into feedback
generation and automated assessment methods.

The thesis also contributes to the academic discourse on the applicability
of LLMs in educational technology. It provides empirical data and analysis
that shed light on the capabilities and limitations of using LLMs for feedback
generation and presents valuable insights for future research in this area.

8.3 Future Work

After addressing the open goals in Section 8.1.1, we identify further steps to
improve automated feedback in Artemis. The section will cover three main
areas: fine-tuning large language models, introducing a more sophisticated
approach for programming exercises, and the extension to modeling exercises.

8.3.1 Fine-Tuning Large Language Models

Fine-tuning LLMs such as GPT-3 or GPT-3.5-Turbo offers a robust method
for elevating the automated feedback system in Artemis. Fine-tuning enables
models to generate more relevant, consistent, and precise feedback by learn-
ing from past feedback, similar to CoFee [Ber22]. This aligns with OpenAl’s
guidelines on fine-tuning, which advocate for its utility in producing higher
quality results and in making the system more cost-efficient?.

Secondly, fine-tuning simplifies the complexity tied to prompt optimiza-
tion. The model learns the desired style and format, thereby mitigating the
need for intricate prompts. Next to the model’s increase in reliability and ro-
bustness, the token consumption also benefits, allowing for shorter prompts
that reduce both latency and costs, as reiterated by OpenAl’s guidelines.

For the feedback generation of text exercises, as detailed in Section 6.2,
fine-tuning can readily be applied by simply fine-tuning on incoming feedback
and subsequently using the fine-tuned model for feedback generation. For
programming exercises, as detailed in Section 6.3, the first step is to find
better ways to provide high-quality context to the LLM before applying fine-
tuning for the feedback generation process.

https://openai.com/blog/gpt-3-5-turbo-fine-tuning-and-api-updates

76

https://openai.com/blog/gpt-3-5-turbo-fine-tuning-and-api-updates

8.3. FUTURE WORK

Exploring open-source alternatives such as LLaMA-2 [TMS] also holds
potential, specifically for research purposes. Comparable in performance to
commercial models, LLaMA-2 allows fine-tuning on in-house infrastructure,
enabling more control over the training process.

In summary, fine-tuning is a pragmatic approach to enhance automated
feedback capabilities of Artemis. It sets a promising direction for future
research, aiming to produce more contextual, consistent, and task-oriented

feedback.

8.3.2 Agentic Approach for Programming Exercises

The feedback generation process for programming exercises discussed in Sec-
tion 6.3 has certain limitations, most notably in its context handling. The
current model tends to flood the LLM with abundant information from a
changed file, while ignoring valuable context from other files. This not only
increases computational demands but also compromises the relevance of the
feedback generated. To overcome these issues, we propose an agentic ap-
proach to feedback generation.

In this approach, the LLM functions less like a simple query-response
mechanism and more like an intelligent agent. This agent emulates a tutor’s
thought process when evaluating a piece of code. It decomposes the com-
plex task of code assessment into smaller, manageable tasks and outlines a
series of actions to reach a meaningful conclusion. These actions may range
from reading the problem statement, and consulting test results to examining
specific lines of code or tracing function calls.

As the agent progresses through these tasks, it accumulates notes to build
context. Subsequently, we use this context to generate feedback suggestions
for the assessment. This approach allows for more targeted feedback, focusing
on the context of specific code blocks and functions rather than the entire
file. It might still be computationally expensive but potentially yield more
relevant and higher-quality feedback suggestions.

8.3.3 Modeling Exercises

While this thesis focuses on using LLMs for text and programming exercises
in the Artemis Learning Management System, extending this framework to
modeling exercises is a promising avenue for future work. The application of
LLMs in this area remains largely unexplored and could offer significant ad-
vantages, such as generating context-aware feedback or recognizing patterns
in Unified Modeling Language (UML) diagrams.

7

CHAPTER 8. SUMMARY

Artemis already employs a semi-automatic, machine learning-based as-
sessment for modeling exercises [Kru22|. This existing framework serves as a
solid foundation for incorporating LLM-generated feedback. One significant
challenge is the graphical nature of modeling exercises, which contrasts with
the text-based focus of LLMs. Nevertheless, this challenge is not impossi-
ble. UML diagrams can be converted into structured textual formats such
as JSON or Markdown, formats LLMs can process effectively. This would
allow LLMs to offer feedback suggestions for modeling exercises in a manner
similar to our contributions to text and programming exercises.

In summary, extending the application of LLMs to modeling exercises
within Artemis represents a promising avenue for future research, seamlessly
integrating with existing structures and processes.

78

Appendix A

Data Exploration

This chapter examines the specific data within Artemis pertinent to the the-
sis, concentrating on text and programming exercises related to assessment.
It begins with data acquisition and selection procedures and progresses to
exploratory data analysis (EDA) concerning text and programming exercises.

A.1 Data Acquisition and Selection

The Artemis team supplied the data utilized in this exploration, delivered
as an anonymized database dump from the Technical University of Munich’s
Artemis instance, dated March 29, 2023.

We confide our examination to text and programming exercises that fulfill
certain conditions: they must not be part of a test course, must contribute
to the cumulative grade, and must be either an exam or non-exam exercise.

Concerning the Artemis data model, as depicted in Figure A.1, the focus
is on participations with at least one submitted submission and a corre-
sponding rated result. We omit all others. For this analysis, only the final
submission and the latest corresponding rated result for each participation
are considered. This ensures that only the final submissions and outcomes
are assessed, rather than preliminary ones. For text exercises specifically, we
disregard any submissions lacking text.

A.2 Exploratory Data Analysis (EDA)

The aim of this section is to provide a foundational understanding of the
Artemis data, particularly focusing on text and programming exercises that
align with the objective of this thesis: generating automatic feedback to
support tutors during assessment. We’'ll explore overarching trends within

79

APPENDIX A. DATA EXPLORATION

Exam Course
title title
startDate shortName
endDate startDate

! | visibleDate exams 1 | endDate

confirmationText semester

. * course .
maxPoints onlineCourse
randomizeOrder studentGroupName
gracePeriod taGroupName
registeredStudents instructorGroupName
exam 1 course | 1

* | exercises

* | exerciseGroups

. Exercise
ExerciseGroup
titl exerciseGroup *| title
itle
1 exercises fgggg:g:ie ProgrammingExercise |
* dueDate - - |
StudentExam * | maxScore ModelingExercise
* exercises | ProblemStatement QuizE N |
workingTime gradingInstructions uizExercise
started assessmentDueDate -
submitted T 1| mode TextExercise |
eam
startedDate teams assessmentType
submissionDate name exercise | 1
testRun ?honName * | participations
image
Participation Submission
repositoryUrl ! submissions| sy bmitted
buildPlanld participation *| submissionDate
owner |, 1 * |, students initializationDate p— ;
4 « | presentationScore submission
User - intializationState
tudent
login studen 1 | participation
password
firstName
lastName result | *
email
activated Result fsuns
lastNotificationRead | assessor * completionDate
registrationNumber
1 successful
buildArtitact Feedback
ul ! 1 feedbacks
score text
result *
assessmentType rated detailText
' 1 /N result refe(ence
AssessmentType credits
AUTOMATIC gradinglnstruction
SEMI_AUTOMATIC
MANUAL -
Complaint
complaintText ComplaintResponse
accepted
] . responseText
zg%migﬁ‘g'mz ! submittedTime
Studgnt' Us);pr complaint reviewer: User
team: Team

Figure A.1: Simplified Data Model of the Artemis Application Server.
Source: https://docs.artemis.cit.tum.de/dev/system-design

80

https://docs.artemis.cit.tum.de/dev/system-design

A.2. EXPLORATORY DATA ANALYSIS (EDA)

Artemis, followed by specific analyses of text and programming exercises.
These insights are not meant to be exhaustive but rather establish a well-
informed basis for establishing the automated feedback generation processes
in this thesis.

A.2.1 Overview

Artemis has amassed significant usage data over its period of deployment at
the Technical University of Munich. The volume of student participation has
been trending upward for both text and programming exercises, as captured
in Figure A.2. Specifically, 4 813 students engaged in programming exercises
during the winter semester of 2022/23, marking a new peak. Conversely,
participation in text exercises peaked at 2992 during the winter semester
of 2020/21 but has since experienced a reduction. The data indicates that
programming exercises play a larger role than text exercises, substantiating
their role as a critical part of the Artemis platform.

Exercise Type
4000 F Bl Text]
B Programming

SN
o
]
o

3000

2000

1000

Number of Participating Students

Oy
%‘9@

O O NN > > v Y
%@\\ & %\%\q’ %q’% @9@ %%q’ %%\,\% %@’
& & & & &

Semester

Figure A.2: Student Participation Trends in Text and Programming Exercises
Across Semesters.

Equally important is the tutors’ engagement with Artemis, as seen in
Figure A.3. For programming exercises, the largest course in the dataset,
“Praktikum: Grundlagen der Programmierung WS21/22”, had a student-
to-assessor ratio of 21.79. Text exercises displayed a slightly higher ratio
of 27.13 students per assessor in the largest course, “Introduction to Soft-
ware Engineering (IN0006) SS217. The regression analysis further reveals

81

APPENDIX A. DATA EXPLORATION

the general scaling challenge: a student-to-assessor ratio of 31.02 for pro-
gramming and 34.48 for text exercises, excluding courses solely dependent
on automated assessments. Note that all 57 courses using text exercises have
at least one assessor, whereas 43 of the 107 courses using programming ex-
ercises have no assessor. These numbers substantiate the urgent need for
automated feedback solutions, aligning directly with the thesis objectives.

100, Text Exercises]
Programming Exercises °
2 80 [---- Regression (Text)]
2 [—--— Regression (Programming) °
2 6of e
o I ° ,.:::”
o [] ”’/’//’
% 40 - /’/’4’; =" e i
=) L ¢ ,//
] o o]
L ° »Z
L) :.99:’ °
I % °
0Fr ‘g’ 2 & B
0 500 1000 1500 2000

Number of Participating Students

Figure A.3: Student-to-Assessor Ratios in Artemis Courses. Data shows the cor-
relation between the number of participating students and assessors,
broken down by text and programming exercises per course. The
regression lines have coefficients of 0.029 for text and 0.032 for pro-
gramming exercises and exclude courses solely reliant on automated
assessments, i.e. Zero assessors.

This overview underscores the growing use of Artemis for educational ac-
tivities while also highlighting the scaling challenges it faces, especially in the
context of assessment. These findings set the stage for a deeper dive into the
characteristics of text and programming exercises, aiming to identify specific
areas where automated feedback could yield significant improvements.

A.2.2 Text Exercises

This subsection delivers an in-depth exploration of text exercises, focusing
on key data-driven insights that are directly relevant to the objective of
automated feedback generation. We leverage multiple visualizations to sub-
stantiate our analyses.

82

A.2. EXPLORATORY DATA ANALYSIS (EDA)

Language Distribution

Figure A.4 exhibits the language distribution among text exercises. Remark-
ably, 76.8% of the total text submissions are in English, followed by 15.6%
in German and 7.6% labeled as unknown. This high prevalence of English
submissions underscores the need for an automated feedback system adept
at processing the English language while also providing secondary support
for German.

Unknown

English

Figure A.4: Distribution of Languages in Text Exercises.

Text Length in Submissions

Analyzing the text length of submissions is crucial for tailoring the feedback
process. This is especially important when using large language models,
which can struggle with long textual contexts. Figure A.5 demonstrates
that the majority of text submissions have a character count between 300
and 900, with a median of 726 characters. The distribution exhibits left-
skewness, featuring a long tail of submissions surpassing 2000 characters.
Notably, the 95th percentile caps at 2170 characters, and the 98th percentile
reaches 3871 characters, suggesting a concentration of shorter submissions
within the dataset.

Feedback Type Distribution

Figure A.6 shows how different types of feedback have been used over time for
text exercises on Artemis. Most of the feedback is “Referenced”, referencing
a text block, followed by “Unreferenced” feedback, belonging to the whole

83

APPENDIX A. DATA EXPLORATION

T e T 1 —
8 3 ,_l\ T T T T] E T T T T T
[\)
] 0.8 -
\] =
] S
\ |
Z \ ; 2 06]
.- 1 o
0 \] =
8 i Z
A \\ 3 A o4l =
p [
\ =
2F J +2
& 02 i
3] =
1F N = S
: .] s
O 1 1 1 1 1 O 0‘0 1 1 1 1 1
0 500 1000 1500 2000 2500 3000 0 500 1000 1500 2000 2500 3000
Submission Length (characters) Submission Length (characters)

Figure A.5: Distribution of Text Submissions Length in Characters.

submission. An existing approach in Artemis, called CoFee [BB19], is re-
sponsible for the “Automatic” and, slightly adjusted, “Automatic Adapted”
feedback. This tool was mostly used between the summer semesters of 2020
and 2021.

Although this data includes all courses, it is worth noting that specific
courses using CoFee had more automatic feedback than the figure suggests.
Interestingly, almost no automatic feedback was used from winter semester
2021/22 to the winter semester 2022/23. The last time automatic feedback
was significantly used was in the summer semester 2021.

The drop in automated feedback usage during recent semesters suggests
a need for further study to understand its effectiveness. This trend also high-
lights the importance of this thesis, which aims to develop a new automated
feedback system for Artemis.

Usage of Structured Grading Instructions

Structured grading instructions are a feature of Artemis that allows tutors to
apply predefined feedback to a submission. Figure A.7 reveals a significant
adoption of structured grading instructions in recent semesters. A majority
of the feedback instances are directly linked to these instructions. Notably,
there is a surge of empty feedback entries between the summer semester 2019
and the winter semester 2020/2021. This can be attributed to the likely dele-
tion of associated grading instructions. Only a minor fraction of feedback,
which uses structured grading instructions, is extended by additional com-
ments. This suggests that the existing structured grading instructions largely
fulfill the need for effective feedback.

84

A.2. EXPLORATORY DATA ANALYSIS (EDA)

140000 k- Feedback Type
BN Referenced

[B Unreferenced
E Automatic Adapted
Automatic

120000

100000

80000

60000

40000

Number of Feedbacks

20000

0

Q N} N N O YV o)
38 o
P M f@\q’ & ,»x\% &R fﬁ»\%
& & & &
Semester

Figure A.6: Distribution of Feedback Types for Text Exercises Across Semesters.
“Automatic” and “Automatic Adapted” refer to feedback provided
by CoFee [BB19]. “Referenced” feedback is linked to a specific text
passage, whereas “Unreferenced” feedback is not.

——————
140000 L Grading Instruction 1
Bl Not Used

I Not Used (Empty)
120000 - pmmm Used]
Extended

100000

80000

60000

Number of Feedbacks

40000

20000

SS19 WS19/20 SS20 WS20/21 SS21 WS21/22 SS22
Semester

Figure A.7: Usage of Structured Grading Instructions in Text Exercises. “Not
Used (Empty)” refers to feedback that has no content and linked
grading instruction, probably due to deletion of the grading instruc-
tion. “Extended” denotes feedback that is linked to a grading in-
struction, but also additional comments.

85

APPENDIX A. DATA EXPLORATION

Referenced and Unreferenced Feedback

Figure A.8 delves into the nature of the feedback given in text exercises.
The overarching takeaway, illustrated in Figure A.8a, is that a substantial
86.4% of the feedback is referenced. Within this subset, Figure A.8b reveals
that 85.8% of the referenced feedback is positive, 13.0% is neutral, and a
mere 1.2% is negative. In contrast, unreferenced feedback, showcased in Fig-
ure A.8c, largely comprises neutral comments at 64.7%, followed by positive
at 33.3%, and negative at 2.0%.

This data underscores the utility of an automated system capable of gen-
erating primarily referenced and positive feedback, mirroring existing human-

assessment patterns.
Unreferenced
' 13.4%

Referenced

(a) Distribution of Referenced and Unreferenced Feedback.

x10° x10*

&) 4 F T T] 'MVJ T
24T 361443 z 41985
< L x4 F -
Q2 t Q
=3]]
g S3f]
~ T ~
o 9 b — 21623
S Syl]
= [.
) L <5}
21])
gt 54544 air]
S r = 1290
Z 5140 Z o |

Positive Neutral Negative Positive Neutral Negative

(b) Types of Referenced Feedback. (c) Types of Unreferenced Feedback.

Figure A.8: Analysis of Referenced and Unreferenced Feedback in Text Exer-
cises.

86

A.2. EXPLORATORY DATA ANALYSIS (EDA)

Summary

This subsection synthesized key insights from the data-driven evaluation of
text exercises in Artemis, informing the development of an automated feed-
back system. The highlights are as follows:

e Language Dominance: English submissions are predominant, neces-
sitating a system skilled in English language processing.

e Text Length: Submissions are primarily shorter, with a median of
726 characters, and 95th percentile at 2170 characters.

e Feedback Types: A recent decline in automated feedback underscores
the relevance of this research.

e Structured Grading Instructions: Existing structured grading in-
structions are widely used, effective, and largely self-sufficient for feed-
back.

e Feedback Nature: A system should mainly produce referenced and
positive feedback, alternatively using neutral feedback for remarks, to
align with current practices.

These insights collectively serve as foundational elements for designing an
efficient, context-aware automated feedback system.

A.2.3 Programming Exercises

This subsection offers a comprehensive overview of programming exercises,
presenting critical insights that have implications for automated feedback
generation in the Artemis system. Multiple visualizations support our data-
driven conclusions.

Programming Languages Distribution

Figure A.9 reveals a striking dominance of Java, accounting for 77.41% of
participations. C and OCaml follow distantly, with percentages of 10.71%
and 5.27%, respectively. The dominance of Java in the dataset highlights
the need for a feedback system that is proficient in both Java syntax and
semantics.

87

APPENDIX A. DATA EXPLORATION

OCaml

Haskell
Python
Others

Figure A.9: Distribution of Programming Languages in Programming Exercises.

Feedback Type Distribution

In Artemis, the feedback types for programming exercises fall into two pri-
mary categories: manual and automatic, as depicted in Figure A.10. The
subtypes for manual feedback include “Referenced” and “Unreferenced”,
while automatic feedback consists of “Test Case”, i.e. automatic testing,
and “Static Code Analysis”.

Unreferenced feedback consistently outnumbers referenced feedback, as
evidenced by Figure A.10a. The only major shifts occur during the win-
ter semesters of 2020/21 and 2021/22, where a larger portion of referenced
feedback exists, making it more balanced. This data pattern suggests that
the current manual assessment process leans heavily towards generalized,
submission-level comments, as opposed to offering feedback on specific code
locations. The persistence of this trend highlights inefficiencies and areas for
potential improvement within the manual feedback system.

On the other hand, Figure A.10b demonstrates that automatic feedback
dramatically surpasses manual feedback by one to two orders of magnitude
in quantity. The volume of automatic feedback has been on a steady rise,
which further underscores its efficiency in generating immediate, iterative
assessments.

The disparity between manual and automatic feedback can largely be
attributed to the human effort required for manual evaluations. While auto-
matic feedback is generated with minimal human intervention, manual feed-
back demands a more labor-intensive process. Specifically, the dominance of

88

A.2. EXPLORATORY DATA ANALYSIS (EDA)

unreferenced feedback in the manual category points to a lack of targeted,
code-specific commentary.

Given these observations, our research aims to introduce a more auto-
matic feedback generation process that supplements the manual assessment
process, thereby enhancing its efficiency and specificity. By doing so, we in-
tend to bridge the gap between the volume and quality of manual assessments
without compromising the depth of qualitative feedback.

Usage of Structured Grading Instructions

Figure A.11 reveals that structured grading instructions are barely used for
manual feedback in programming exercises. A small fraction of feedback
during summer semester 2021 and winter semester 2021/22 utilized grading
instructions, but apart from that, the usage is negligible. This trend un-
derscores the hypothesis that structured grading instructions have not been
widely adopted in the manual feedback process of programming exercises.
This finding is in stark contrast to the usage of structured grading instruc-
tions in text exercises, as seen in Appendix A.2.2.

Referenced and Unreferenced Feedback

A critical examination of the referenced and unreferenced feedback in pro-
gramming exercises is found in Figure A.12. Notably, Figure A.12a reveals
that an overwhelming 88.5% of feedback is unreferenced. In contrast, the
ratio between referenced and unreferenced feedback is reversed for text ex-
ercises, as seen in Appendix A.2.2. Within the unreferenced category, Fig-
ure A.12c breaks down the types as 55.1% positive, 44.8% neutral, and a
marginal 0.02% negative. Conversely, Figure A.12b indicates that referenced
feedback is predominantly neutral (84.7%), followed by negative (8.5%) and
positive (6.8%) remarks.

The high prevalence of positive, unreferenced feedback may result from
tutors predominantly using this category for awarding credits. Conversely,
the tilt towards neutral comments in referenced feedback suggests that tutors
use code annotations for making clarifications or providing non-evaluative
guidance. These observations align with the hypothesis that tutors allocate
credits via unreferenced feedback while offering explanatory or cautionary
remarks as referenced, neutral feedback in the code. This behavior warrants
further investigation as it provides critical context for designing an automated
feedback generation system intended to assist in semi-automatic assessment
processes.

89

APPENDIX A. DATA EXPLORATION

x10°
T T N B AL L L AL BELENLEL AL BN AL A L ANLEL AL BELENL AL BN

U BB Referenced
I Unreferenced

—
=

—
[\v)

=
o
T

Number of Feedbacks
o
o0

0.6 F
0.4 F
0.2 F
0.0 bo
N N
& %@\% &
)
Semester
(a) Manual Feedback Types.
x10°
T T T T T T T T
[0 Test Case

2.00 F 3

[0 Static Code Analysis

-
-
ot

—_
[\
o

Number of Feedbacks

1.00
0.75
0.50
0.25
0.00
R N R G
& & & &

Semester

(b) Automatic Feedback Types.

Figure A.10: Distribution of Feedback Types for Programming Exercises Across
Semesters.

90

A.2. EXPLORATORY DATA ANALYSIS (EDA)

R A
Grading Instruction
I Not Used

120000 I Not Used (Empty)
EE Used

Extended
100000 B

140000 F

80000 b

60000 - b

Number of Feedbacks

40000 T

20000 T

WS19/20 SS20 WS20/21 SS21 WS21/22 SS22 WS22/23
Semester

Figure A.11: Usage of Structured Grading Instructions in Programming Exer-
cises for Manual Feedback.

Summary

This subsection distills the essential findings from our data-driven analysis
of programming exercises within the Artemis system, shaping the design of
an enhanced automated feedback mechanism. The pivotal observations are
summarized as follows:

e Language Dominance: Java dominates with a 77.41% participation
rate, necessitating Java expertise in the feedback system, followed by

C and OCaml.

e Feedback Types: Automatic feedback outnumbers manual, signal-
ing efficiency but also the need for refinement of the manual feedback
process.

e Structured Grading Instructions: The low usage of structured
grading instructions suggests they’re not central to the current assess-
ment process.

e Feedback Nature: Most manual feedback is unreferenced (88.5%)
and positive, while referenced feedback tends to be neutral and clari-

fying.

These observations serve as foundational guidelines for developing an au-
tomatic feedback system. This system aims to enhance the volume and

91

APPENDIX A. DATA EXPLORATION

quality of manual assessments within the Artemis platform.

Referenced

Unreferenced

(a) Distribution of Referenced and Unreferenced Feedback.

x10° x10°
T
3234070

644854

2628115

[}
T
1
w

Number of Feedbacks
) IS
Number of Feedbacks

—
T
1

51696 64767

R T

o
o

Positive Neutral Negative Positive Neutral Negative

(b) Types of Referenced Feedback. (c) Types of Unreferenced Feedback.

Figure A.12: Analysis of Referenced and Unreferenced Feedback in Program-
ming Exercises.

92

List of Figures

2.1

4.1
4.2
4.3
4.4
4.5
4.6

4.7

4.8
4.9

5.1

5.2

5.3

5.4

9.5

6.1
6.2
6.3
6.4
6.5
6.6

Basic Workflow using Large Language Models 9
Text Exercise Assessment Features in Artemis 14
Programming Exercise Assessment Features in Artemis 15
UML Use Case Diagram: Learning Management Context . . . 24
UML Use Case Diagram: Research and Development Context 26
UML Class Diagram: Analysis Object Model 27
UML Activity Diagram: Learning Management Context As-

sessment Workflowo 28
UML Activity Diagram: Research and Development Context

Experiment Conduction Workflow 29
Proposed Inline Feedback Suggestion UL 30
Proposed Unreferenced Feedback Suggestion UL 31
UML Component Diagram: Top-Level Subsystem Decompo-

sitlon e 35
UML Component Diagram: Subsystem Decomposition of a

LLM Module 36
UML Component Diagram: Subsystem Decomposition of the

R&D Playground 37
UML Component Diagram: Subsystem Decomposition of the

Feedback Suggestions Within Artemis 38
UML Deployment Diagram: Hardware-Software Mapping . . . 39
UML Class Diagram: Module Interface 41
UML Activity Diagram: Text LLM Module 43
Prompt for Generating Feedback Suggestions for Text Exercises 44
Prompt for Generating Evaluations for Text Exercises 45
UML Activity Diagram: Programming LLM Module A7
Prompt for Splitting the Grading Instructions by File for Pro-

gramming Exercises00 48

LIST OF FIGURES

6.7 Prompt for Splitting the Problem Statement by File for Pro-
gramming Exerciseso
6.8 Prompt for Generating Feedback Suggestions for Program-
ming Exercises oo
6.9 Module Configuration Ul of the R&D Playground for the Text
LLM Module
6.10 Module Requests Ul of the R&D Playground for Feedback
Suggestions from Athena
6.11 Define Experiment UI of the R&D Playground
6.12 Configure Modules UI of the R&D Playground
6.13 Conduct Experiment Exercise Details and Tutor Feedback Ul
of the R&D Playground
6.14 Conduct Experiment Module Comparison Ul of the R&D Play-
ground for a Text Module
6.15 Conduct Experiment Module Comparison UI of the R&D Play-
ground for a Programming Module

A.1 Simplified Data Model of the Artemis Application Server . . .
A.2 Student Participation Trends in Text and Programming Ex-
ercises Across Semesters
A.3 Student-to-Assessor Ratios in Artemis Courses
A.4 Distribution of Languages in Text Exercises
A.5 Distribution of Text Submissions Length in Characters.

84

A.6 Distribution of Feedback Types for Text Exercises Across Semesters

A.7 Usage of Structured Grading Instructions in Text Exercises . .
A.8 Analysis of Referenced and Unreferenced Feedback in Text
Exercises
A.9 Distribution of Programming Languages in Programming Ex-
EICISES . . . v o e e
A.10 Distribution of Feedback Types for Programming Exercises
Across Semesters
A.11 Usage of Structured Grading Instructions in Programming Ex-
ercises for Manual Feedback
A.12 Analysis of Referenced and Unreferenced Feedback in Pro-
gramming Exercises Lo

94

85
85

List of Tables

7.1
7.2
7.3
7.4

7.5
7.6

7.7

8.1

8.2

8.3

Empty Feedback Rates in Artemis Courses for Text Exercises
Text Exercises Selected for Evaluation
Potential Programming Exercises Selected for Evaluation . . .
Comparative Analysis of Five Different Prompts in Experi-
ment T1 oo
Comparative Analysis of LLMs in Experiment T2
Comparative Analysis of Selected Text Exercises in Experi-
ment T4
Comparative Analysis of GPT-3.5-Turbo and GPT-4 in Ex-
periment P1 oo

Status of Functional Requirements for Text Exercises within
the Learning Management Context
Status of Functional Requirements for Programming Exercises
within the Learning Management Context
Status of Functional Requirements for the Research and De-
velopment Context

95

59

Bibliography

[Ala05]

[BD10]

[Ber22]

[BJV13]

[BKB22]

[BMR20]

Kirsti M Ala-Mutka. A Survey of Automated Assessment Ap-
proaches for Programming Assignments. Computer Science Ed-
ucation, 15(2):83-102, June 2005.

Jan Philip Bernius and Bernd Bruegge. Toward the Automatic
Assessment of Text Exercises.

Jan Philip Bernius and Bernd Bruegge. Toward the automatic
assessment of text exercises. In 2nd Workshop on Innovative
Software Engineering Education (ISEE), pages 19-22, Stuttgart,
Germany, 2019.

Bernd Bruegge and Allen H. Dutoit. Object-Oriented Software
Engineering: Using UML, Patterns, and Java. Prentice Hall,
Boston, 3rd ed edition, 2010.

Jan Philip Bernius. Automatic Assessment of Textual Exercises.
PhD thesis, Technische Universitat Miinchen, 2022.

Sumit Basu, Chuck Jacobs, and Lucy Vanderwende. Powergrad-
ing: A Clustering Approach to Amplify Human Effort for Short
Answer Grading. Transactions of the Association for Computa-
tional Linguistics, 1:391-402, October 2013.

Jan Philip Bernius, Stephan Krusche, and Bernd Bruegge. Ma-
chine learning based feedback on textual student answers in
large courses. Computers and Education: Artificial Intelligence,
3:100081, January 2022.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah,
Jared Kaplan, Prafulla Dhariwal, Arvind Neelakantan, Pranav
Shyam, Girish Sastry, et al. Language Models are Few-Shot
Learners, July 2020.

96

BIBLIOGRAPHY

[CH10]

[CTJ*21]

[DCLT19)]

[DZY17]

[EP0S]

[HTO07]

[IM23]

[KR16]

[Kru21]

A. Collins and R. Halverson. The second educational revolution:
Rethinking education in the age of technology: The second ed-
ucational revolution. Journal of Computer Assisted Learning,
26(1):18-27, January 2010.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Hen-
rique Ponde de Oliveira Pinto, Jared Kaplan, Harri Edwards,
Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating
Large Language Models Trained on Code, July 2021.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina
Toutanova. BERT: Pre-training of Deep Bidirectional Trans-
formers for Language Understanding, May 2019.

Fei Dong, Yue Zhang, and Jie Yang. Attention-based Recurrent
Convolutional Neural Network for Automatic Essay Scoring. In
Proceedings of the 21st Conference on Computational Natural
Language Learning (CoNLL 2017), pages 153-162, Vancouver,
Canada, August 2017. Association for Computational Linguis-
tics.

Stephen H. Edwards and Manuel A. Perez-Quinones. Web-CAT:
Automatically grading programming assignments. In Proceed-
ings of the 13th Annual Conference on Innovation and Tech-
nology in Computer Science Education, ITiCSE 08, page 328,
New York, NY, USA, June 2008. Association for Computing
Machinery.

John Hattie and Helen Timperley. The Power of Feedback. Re-
view of Educational Research, 77(1):81-112, March 2007.

Daniel Jurafsky and James H. Martin. Speech and Language
Processing. Third Draft edition. Draft of January 7, 2023.
https://web.stanford.edu/~jurafsky /slp3/ed3book.pdf, January
2023.

Rezaul Kabir and Ismat Rahman. The Value and Effectiveness
of Feedback in Improving Students’ Learning and Professional-
izing Teaching in Higher Education. Journal of Education and
Practice, 2016.

Stephan (Dr) Krusche. Interactive Learning - A Scalable and
Adaptive Learning Approach for Large Courses. 2021.

97

BIBLIOGRAPHY

[Kru22]

[KS18]

[KSK+23]

[Mii22]

[NMDO6]

[Ope23]

[OWJ+22]

[RJO19]

[RNSS]

[RSR*+20]

Stephan Krusche. Semi-Automatic Assessment of Modeling Ex-
ercises Using Supervised Machine Learning. January 2022.

Stephan Krusche and Andreas Seitz. ArTEMiS: An Automatic
Assessment Management System for Interactive Learning. In
Proceedings of the 49th ACM Technical Symposium on Com-
puter Science FEducation, pages 284-289, Baltimore Maryland
USA, February 2018. ACM.

Enkelejda Kasneci, Kathrin SeBler, Stefan Kiichemann, Maria
Bannert, Daryna Dementieva, Frank Fischer, Urs Gasser, Georg
Groh, Stephan Giinnemann, Eyke Hiillermeier, Stephan Kr-
usche, et al. ChatGPT for Good? On Opportunities and Chal-
lenges of Large Language Models for Education, January 2023.

Technische Universitat Minchen. Tum in zahlen 2021. Technical
report, Technische Universitat Miinchen, Miinchen, 2022.

David J. Nicol and Debra Macfarlane-Dick. Formative assess-
ment and self-regulated learning: A model and seven princi-
ples of good feedback practice. Studies in Higher Education,
31(2):199-218, April 2006.

OpenAl. GPT-4 Technical Report, March 2023.

Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Carroll L.
Wainwright, Pamela Mishkin, Chong Zhang, Sandhini Agarwal,
Katarina Slama, et al. Training language models to follow in-
structions with human feedback, March 2022.

Pedro Uria Rodriguez, Amir Jafari, and Christopher M.
Ormerod. Language models and Automated Essay Scoring,
September 2019.

Alec Radford, Karthik Narasimhan, Tim Salimans, and Ilya
Sutskever. Improving Language Understanding by Generative
Pre-Training.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sha-
ran Narang, Michael Matena, Yanqi Zhou, Wei Li, and Peter J.
Liu. Exploring the Limits of Transfer Learning with a Unified
Text-to-Text Transformer. Journal of Machine Learning Re-
search, 21(140):1-67, 2020.

98

BIBLIOGRAPHY

[RWC]

[Sch23]

[SKGAL7]

[TCL21]

[TDFH*22)

[Tea22]

[TMS]

[VSP+23]

[WHZ*15]

[WSF+23]

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario
Amodei, and Ilya Sutskever. Language Models are Unsupervised
Multitask Learners.

Paul Schwind. Generalizing machine-learning based assess-
ments. Master’s thesis, Technical University of Munich, 2023.

Arjun Singh, Sergey Karayev, Kevin Gutowski, and Pieter
Abbeel. Gradescope: A Fast, Flexible, and Fair System for
Scalable Assessment of Handwritten Work. In Proceedings of
the Fourth (2017) ACM Conference on Learning @ Scale, pages
81-88, Cambridge Massachusetts USA, April 2017. ACM.

Darren Turnbull, Ritesh Chugh, and Jo Luck. Learning manage-
ment systems: A review of the research methodology literature
in Australia and China. International Journal of Research &
Method in Education, 44(2):164-178, March 2021.

Romal Thoppilan, Daniel De Freitas, Jamie Hall, Noam Shazeer,
Apoorv Kulshreshtha, Heng-Tze Cheng, Alicia Jin, Taylor Bos,

Leslie Baker, Yu Du, et al. LaMDA: Language Models for Dialog
Applications, February 2022.

OpenAl Team. ChatGPT: Optimizing language models for di-
alogue. https://openai.com/blog/chatgpt/, Nov 2022. Ac-
cessed: 2023-02-05.

Hugo Touvron, Louis Martin, and Kevin Stone. Llama 2: Open
Foundation and Fine-Tuned Chat Models.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit,
Llion Jones, Aidan N. Gomez, Lukasz Kaiser, and Illia Polo-
sukhin. Attention Is All You Need, August 2023.

Dongging Wang, Hou Han, Zehui Zhan, Jun Xu, Quanbo Liu,
and Guangjie Ren. A problem solving oriented intelligent tutor-
ing system to improve students’ acquisition of basic computer
skills. Computers € Education, 81:102-112, February 2015.

BigScience Workshop, Teven Le Scao, Angela Fan, Christo-
pher Akiki, Ellie Pavlick, Suzana Ili¢, Daniel Hesslow, Roman
Castagné, Alexandra Sasha Luccioni, et al. BLOOM: A 176B-
Parameter Open-Access Multilingual Language Model, June
2023.

99

https://openai.com/blog/chatgpt/

BIBLIOGRAPHY

[ZCS*23] Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang,
Zhanghao Wu, Yonghao Zhuang, Zi Lin, Zhuohan Li, Dacheng
Li, Eric P. Xing, et al. Judging LLM-as-a-judge with M'T-Bench
and Chatbot Arena, July 2023.

100

