

Leveraging LLMs for Automated Feedback Generation on Exercises

Master's Thesis Intermediate Presentation Author: Felix Timotheus Johannes Dietrich Supervisor: Prof. Dr. Stephan Krusche Advisor: Maximilian Sölch, M.Sc.

Technical University of Munich

TUM School of Computation, Information and Technology Chair for Applied Software Engineering

Munich, 11. September 2023

Athena

Outline

Problems

Scalability of Manual Feedback

Assessment is Time Consuming Feedback Quality/Quantity Suffers

Motivation

Improve Learning Experience

Reduced Workload for Tutors

Leverage LLMs

Requirements Analysis

Requirements Analysis

System Design

System Design

Max Tokens (~4000 for GPT-3.5-Turbo)

How to Generate Feedback for Text Exercises?

DEMO Text Exercises

LLMS

A

System Message

Evaluation – Text Exercises (Multiple LLMs)

Model	Tokens	Time (s)	Feedbacks	Est. Acc. (%)
GPT-3.5-Turbo	1522	5.58	3.03	82.2%
GPT-4	1406	10.09	3.32	80.1%
LLaMA-2-13b-Chat	2008	22.21	1.91	44.5%

Benchmarked on 100 submissions of H04E01 Coupling and Cohesion

Evaluation – Text Exercises (LLM-as-a-judge)

Benchmarked on 100 submissions of H04E01 Coupling and Cohesion (303 pieces of feedback)

Evaluation – Text Exercises (Multiple Exercises)

ID	Tokens	Time (s)	Feedbacks	Est. Acc. (%)
4160	1522	5.58	3.03	82.2
4101	1813	3.43	1.22	64.8
4238	2145	9.41	6.75	78.3
4082	2196	10.24	7.04	73.6
4162	1961	8.30	3.01	98.0

Benchmarked on 100 submissions each

Evaluation – Text Exercises (Multiple Exercises)

ID	Tokens	Time (s)	Feedbacks	Est. Acc. (%)		
4160	1522	5.58	3.03	82.2		
4101	1813	3.43	1.22	64.8		
4238	2145	9.41	6.75	78.3		
4082	2196	10.24	7.04	73.6		
4162	1961	8.30	3.01	98.0		
~\$0.004 per submission with GPT-3.5-Turb						
Pe	rforms	well ar	nd costs	are low 🎉		

Next Step: Live evaluation on Artemis

Programming Exercises

ILMS

How to Generate Feedback for Programming Exercises?

Generate Feedback Suggestions per File

*Simplified for presentation

Programming Assessment

DEMO Programming Exercises

LLMS

Al.

Evaluation – Programming Exercises

Model	Tokens	Time (s)	Feedbacks			
GPT-3.5-Turbo	12953	57.08	10.81			
GPT-4	11409	160.85	18.70			
~\$0,026 per submission with GPT-3.5-Turbo ~\$0,35 per submission with GPT-4						
Evaluated on 48 submissions each (Shoppende Pinguine)						

There is some usable and correct feedback

Evaluation – Takeaways

Not usable for tutors, **yet** But overall very promising with a lot of potential!

Next Step: More sophisticated approach

Status

Implemented by Collaborator

Status

Future Work – Fine-Tuning

Future Work – Agentic Approach for Programming Exercises

Emulate the tutor's actions!

Future Work – Modeling Exercises

Thanks!

LMS

Further reading:

- My thesis
- Paul Schwind's thesis

Backup Slides – Analysis Object Model

Backup Slides – Dynamic Model

Backup Slides – Dynamic Model

Backup Slides – Artemis

Backup Slides – Playground

Backup Slides – Hardware-Software Mapping

Backup Slides – Programming Exercises Configure LLM «structured» «structured» Split Grading Instructions By File Split Problem Statement By File Diff Changed Parse File Problem Diff Changed Parse File Grading LLM LLM Completion Completion Statement Files Instructions Files should run should run Format Splitting File Problem Format Splitting File Grading Prompt Instructions Prompt Statement too long or too long or too short too short Load Changed «iterative» Submission Files Generate Feedback Suggestions Diff File Add Submission **Create Prompt** Omit Long Format Prompt Changes Line Numbers Input Features changed submission file should run Add File Feedback Parse LLM Suggestion Feedback Completion Path too long >)

Backup Slides

Figure A.2: Student Participation Trends in Text and Programming Exercises Across Semesters.

ПΠ

Backup Slides

Figure A.3: Student-to-Assessor Ratios in Artemis Courses. Data shows the correlation between the number of participating students and assessors, broken down by text and programming exercises per course. The regression lines have coefficients of 0.029 for text and 0.032 for programming exercises and exclude courses solely reliant on automated assessments, *i.e.* zero assessors.

Figure A.4: Distribution of Languages in Text Exercises.

Figure A.5: Distribution of Text Submissions Length in Characters.

Figure A.6: Distribution of Feedback Types for Text Exercises Across Semesters. "Automatic" and "Automatic Adapted" refer to feedback provided by CoFee [BB19]. "Referenced" feedback is linked to a specific text passage, whereas "Unreferenced" feedback is not.

Figure A.7: Usage of Structured Grading Instructions in Text Exercises. "Not Used (Empty)" refers to feedback that has no content and liked grading instruction, probably due to deletion of the grading instruction. "Extended" denotes feedback that is linked to a grading instruction, but also additional comments.

Backup Slides – Programming Exercises

Felix Timotheus Johannes Dietrich | Leveraging LLMs for Automated Feedback Generation on Exercises

cises.

Backup Slides – Programming Exercises

Figure A.9: Distribution of Programming Languages in Programming Exercises.

$\times 10^{6}$ $\times 10$ 1.4Test Case Referenced 2.00Static Code Analysis Unreferenced Number of Feedbacks ¹⁰ Number of Feedbacks 1.22 1.20 1.00 0.75 0.20 0.20.250.0 WS19/20 5519 5520 W521/22 SSL 0.00 5521 WS22/28 5519 W519/20 5520 WS20/21 \$5)J W321122 5522 WS21/23 Semester Semester (a) Manual Feedback Types.

Backup Slides – Programming Exercises

(b) Automatic Feedback Types.

Figure A.10: Distribution of Feedback Types for Programming Exercises Across Semesters.

Felix Timotheus Johannes Dietrich | Leveraging LLMs for Automated Feedback Generation on Exercises

е

Backup Slides – Programming Exercises

Backup Slides – Programming Exercises

