

Understanding Class(ifier) Differences

XAI Lab Course

WS 20/21 February 9, 2021

Technical University of Munich Faculty of Informatics

Kadir Aslan, Felix Dietrich

Explainability for Understanding Class(ifer) Differences

Introduction

- Understand **class** differences and **classifier** differences
 - Classification Task: Hate Speech Detection (NLP)
 - Analyze multiple datasets
 - Compare multiple classification methods
 - By performance metrics
 - By applying explainability methods
- Attempted systematic approach

Hate Speech Datasets

- Lots of datasets¹ from different sources available
- Focus on English, Twitter, and text only

Dataset id	# Instances	Classes
Waseem (2016)	16907	racism, sexism, none
Zampieri (2019)	14100	offensive, none
Founta (2018)	99799	abusive, hateful, spam, normal
Basile (2019)	12971	hate-speech, none
Davidson (2017)	24783	hate-speech, offensive, neither

Datasets Overview

- Different kinds of abuse
- Imbalances
- Different data collection strategies

Inter-Dataset Class Similarity

- 1. Preprocess
- 2. FastText pre-trained embeddings
- 3. Calculate tweet centroids
- 4. Group by classes
- 5. Average \rightarrow class centroids
- 6. PCA

Fortuna et al.: "Toxic, Hateful, Offensive or Abusive? What Are We Really Classifying? An Empirical Analysis of Hate Speech Datasets"

Intra-Category Homogeneity

- 1. Preprocess
- 2. FastText pre-trained embeddings
- 3. Calculate tweet centroids
- 4. Group by classes
- 5. Calculate cosine similarity matrix
- 6. Average entries

Class Homogeneity

Fortuna et al.: "Toxic, Hateful, Offensive or Abusive? What Are We Really Classifying? An Empirical Analysis of Hate Speech Datasets"

(Macro) F1 Scores

- Viable classification options in scikit
- Simple neural models with **TensorFlow**

Binarized union of all datasets

							•
		Davidson	Waseem	Basile	Zampieri	Founta	Combined
scikit	LinearSVC	68.7	76.9	72.5	70.5	64.2	87.8
	GaussianNB	53.6	41.4	64.0	55.6	45.7	72.7
	ComplementNB	61.0	73.2	73.2	63.0	55.9	83.3
	DecisionTreeClassifier	66.6	71.8	66.7	64.3	59.2	85.0
	KNeighborsClassifier	55.2	65.4	66.6	60.8	48.2	73.8
	RandomForestClassifier	56.6	73.7	71.7	66.4	57.1	86.9
	_MLPClassifier	68.3	72.9	69.8	66.9	61.6	85.1
ff	DenseClassifier	67.1	74.3	70.7	68.0	63.2	86.6
	LSTMClassifier	61.6	73.0	70.0	66.9	64.2	87.9
	_CNNClassifier	62.7	44.1	70.5	69.4	64.1	87.8

LIME

- Local Interpretable Model-agnostic Explanations
- Computes **feature importance** scores
- Black-box model's decision function is approximated with a locally faithful model.
 - LIME samples instances
 - Gets predictions using the original model
 - Weights them by their distance to the instance being explained

ТШ

Local Explanation - Complement NB

Feature Importance Distributions

Absolute value \rightarrow sort \rightarrow normalize \rightarrow average \rightarrow normalize

Feature Importance Similarities

- Generative classifier: ComplementNB
- Discriminative classifier: LinearSVC, LSTMClassifier

	Davidson	Waseem	Basile	Zampieri	Founta	Combined
ComplementNB	61.0	73.2	73.2	63.0	55.9	83.3
LinearSVC	68.7	76.9	72.5	70.5	64.2	87.8
LSTMClassifier	61.6	73.0	70.0	66.9	64.2	87.9

Classifier Prediction Stability

Observe prediction changes by omitting the most important feature word

Davidson						Waseem			
	F1	F1 (omitted)	abs.	rel. %		F1	F1 (omitted)	abs.	rel. $\%$
ComplementNB	57.27	45.30	-11.97	-20.90	ComplementNB	73.80	60.33	-13.47	-18.26
LinearSVC	66.33	44.93	-21.39	-32.26	LinearSVC	76.95	56.05	-20.89	-27.15
LSTMClassifier	60.16	39.85	-20.31	-33.76	LSTMClassifier	72.93	54.60	-18.33	-25.13
		Basile			Zampieri				
	F1	F1 (omitted)	abs.	rel. $\%$		F1	F1 (omitted)	abs.	rel. $\%$
ComplementNB	68.82	53.03	-15.79	-22.94	ComplementNB	40.77	13.62	-27.15	-66.58
LinearSVC	67.12	48.63	-18.49	-27.55	LinearSVC	55.92	22.33	-33.59	-60.07
LSTMClassifier	65.46	46.58	-18.88	-28.85	LSTMClassifier	53.52	25.71	-27.81	-51.95
Founta					(Combined			
	F1	F1 (omitted)	abs.	rel. $\%$		F1	F1 (omitted)	abs.	rel. $\%$
ComplementNB	55.57	46.14	-9.43	-16.96	ComplementNB	79.53	67.60	-11.93	-15.01
LinearSVC	61.92	34.09	-27.83	-44.95	LinearSVC	83.66	47.35	-36.31	-43.40
LSTMClassifier	61.95	36.44	-25.51	-41.17	LSTMClassifier	84.58	47.03	-37.55	-44.40

Stability - Remarks/Improvements

- Generative classifier more stable than our discriminative ones
- **Problem:** LIME doesn't scale well to **complex models**
- **Future:** Compare same architecture with different hyperparameters
 - **Example:** How many LSTM layers for a more stable prediction?
 - Use bootstrap significance tests
- Similarities to **Dropout layer** for neural models

- Analysis made over **100 instances**
- Over each dataset, for the following classifiers:
 - Linear SVC
 - Complement NB
 - LSTM
- Two different statistics gathered:
 - MIF for **each decision** classifiers made
 - MIF for **wrong decisions** classifiers made

Linear SVC

ΠП

Over all decisions

Complement NB

Over all decisions

17

Over all decisions

Linear SVC

LinearSVC: Most Influential Features in Wrong Decisions | Founta

Over wrong decisions

Complement NB

ComplementNB: Most Influential Features in Wrong Decisions | Founta

LSTMClassifier: Most Influential Features in Wrong Decisions | Davidson

Over wrong decisions

000 025 050 075 100 125 150 175 LSTMClassifier: Most Influential Features in Wrong Decisions | Bastile

2.00

LSTMClassifier: Most Influential Features in Wrong Decisions | Founta

Comparison of Decisions

- Percentages for the combination of classifiers where they made the same decision
- Analysis made over **100 instances**
- Over each dataset, for all combinations of the following classifiers:
 - Linear SVC
 - Complement NB
 - LSTM

Comparison of Decisions

Waseem

Combined

Zampieri

Problems & Conclusion

- Finding differences instead of similarities is hard
- Findings highly depend on the dataset
- Too many datasets and classifiers to choose from
 - Focused approach might be better
- Blackbox approach might be not as insightful

Questions

?