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Introduction

e Understand class differences and classifier differences
o Classification Task: Hate Speech Detection (NLP)
e Analyze multiple datasets
o« Compare multiple classification methods
- By performance metrics
— By applying explainability methods

e Attempted systematic approach



Hate Speech Datasets

e Lots of datasets’ from different sources available

e Focus on English, Twitter, and text only

Dataset id # Instances Classes

Waseem (2016) 16907 racism, sexism, none

Zampieri (2019) 14100 offensive, none

Founta (2018) 99799 abusive, hateful, spam, normal
Basile (2019) 12971 hate-speech, none

Davidson (2017) 24783 hate-speech, offensive, neither

Thttps://hatespeechdata.com



Datasets Overview

Dataset Sizes

e Different kinds of abuse
e Imbalances
e Different data collection e

strategies y
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Inter-Dataset Class Similarity

1. Preprocess

FastText pre-trained embeddings
Calculate tweet centroids

Group by classes

Average - class centroids

PCA
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Fortuna et al.: “Toxic, Hateful, Offensive or Abusive? What Are We Really Classifying? An Empirical Analysis of

Hate Speech Datasets”



https://www.aclweb.org/anthology/2020.lrec-1.838/
https://www.aclweb.org/anthology/2020.lrec-1.838/

Intra-Category Homogeneity

Class Homogeneity
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Fortuna et al.: “Toxic, Hateful, Offensive or Abusive? What Are We Really Classifying? An Empirical Analysis of
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https://www.aclweb.org/anthology/2020.lrec-1.838/
https://www.aclweb.org/anthology/2020.lrec-1.838/

(Macro) F1 Scores

e Viable classification options in scikit

Binarized
union of all

e Simple neural models with TensorFlow datasets

Davidson Waseem Basile Zampieri Founta Combined

 LinearSVC 68.7 76.9 72.5 70.5 64.2 87.8
GaussianNB 53.6 41.4 64.0 55.6 45.7 72.7
:'i ComplementNB 61.0 73.2 73.2 63.0 55.9 83.3
S DecisionTreeClassifier 66.6 71.8 66.7 64.3 59.2 85.0
» | KNeighborsClassifier 55.2 65.4 66.6 60.8 48.2 73.8
RandomForestClassifier 56.6 73.7 71.7 66.4 57.1 86.9
| MLPClassifier 68.3 72.9 69.8 66.9 61.6 85.1
| DenseClassifier 67.1 743 707 68.0 63.2 86.6
5| LSTMClassifier 61.6 73.0  70.0 66.9 64.2 87.9
| CNNClassifier 62.7 44.1 70.5 69.4 64.1 87.8




LIME

e Local Interpretable Model-agnostic Explanations
e Computes feature importance scores

e Black-box model’s decision function is approximated with a
locally faithful model.

e LIME samples instances
e Gets predictions using the original model

» Weights them by their distance to the instance being
explained
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Local Explanation - Complement NB
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Percentage

Avg. feature importance

Feature Importance Distributions

Absolute value - sort - normalize - average - normalize
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F1 scores
Davidson Waseem Basile Zampieri Founta Combined
ComplementNB 61.0 73.2 73.2 63.0 55.9 83.3
LinearSVC 68.7 76.9 72.5 70.5 64.2 87.8
LSTMClassifier 61.6 73.0 70.0 66.9 64.2 87.9

Class
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Feature Importance Similarities

e Generative classifier: ComplementNB

e Discriminative classifier: LinearSVC, LSTMClassifier

Cosine similarity
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Comparison pair

F'1 scores

Davidson Waseem Basile Zampieri Founta Combined

ComplementNB 61.0 73.2 73.2 63.0 55.9 83.3
LinearSVC 68.7 76.9 72.5 70.5 64.2 87.8
LSTMClassifier 61.6 73.0 70.0 66.9 64.2 87.9 12




Classifier Prediction Stability

Observe prediction changes by omitting the most important feature word

TUT

Davidson Waseem
F1 F1 (omitted) abs. rel. % F1 F1 (omitted) abs. rel. %
ComplementNB  57.27 45.30 -11.97 -20.90 ComplementNB  73.80 60.33 -13.47 -18.26
LinearSVC 66.33 4493 -21.39 -32.26 LinearSVC 76.95 56.05 -20.89 -27.15
LSTMClassifier  60.16 39.85 -20.31 -33.76 LSTMClassifier ~ 72.93 54.60 -18.33 -25.13
Basile Zampieri
F1 F1 (omitted) abs. rel. % F1 F1 (omitted) abs. rel. %
ComplementNB  68.82 53.03 -15.79 -22.94 ComplementNB  40.77 13.62 -27.15 -66.58
LinearSVC 67.12 48.63 -18.49 -27.55 LinearSVC 55.92 22.33 -33.59 -60.07
LSTMClassifier — 65.46 46.58 -18.88 -28.85 LSTMClassifier — 53.52 25.71 -27.81 -51.95
Founta Combined
F1 F1 (omitted) abs. rel. % F1 F1 (omitted) abs. rel. %
ComplementNB  55.57 46.14  -9.43 -16.96 ComplementNB  79.53 67.60 -11.93 -15.01
LinearSVC 61.92 34.09 -27.83 -44.95 LinearSVC 83.66 47.35 -36.31 -43.40
LSTMClassifier  61.95 36.44 -25.51 -41.17 LSTMClassifier — 84.58 47.03 -37.55 -44.40
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Stability - Remarks/Improvements

e Generative classifier more stable than our discriminative
ones

e Problem: LIME doesn’t scale well to complex models

e Future: Compare same architecture with different
hyperparameters

« Example: How many LSTM layers for a more stable
prediction?

e Use bootstrap significance tests

e Similarities to Dropout layer for neural models

14



Most Influential Features

e Analysis made over 100 instances

e Over each dataset, for the following classifiers:

e Linear SVC
e Complement NB
e LSTM
e Two different statistics gathered:
e MIF for each decision classifiers made

e MIF for wrong decisions classifiers made

15



Most Influential Features

Over all decisions
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Most Influential Features

Over all decisions

ComplementNB: Most Influential Features | Davidson
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Most Influential Feat

Over all decisions

LSTMClassifier: Most Influential Features | Davidson
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Most Influential Features

Over wrong decisions
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Most Influential Features

Over wrong decisions
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Most Influential Features

Over wrong decisions
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Comparison of Decisions

e Percentages for the combination of classifiers where they
made the same decision

e Analysis made over 100 instances

e Over each dataset, for all combinations of the following
classifiers:

e Linear SVC
e Complement NB
e LSTM
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Comparison of Decisions
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Problems & Conclusion

e Finding differences instead of similarities is hard

e Findings highly depend on the dataset

e Too many datasets and classifiers to choose from
e Focused approach might be better

e Blackbox approach might be not as insightful
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Questions
?
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