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● Understand class differences and classifier differences

• Classification Task: Hate Speech Detection (NLP

• Analyze multiple datasets

• Compare multiple classification methods

− By performance metrics

− By applying explainability methods

● Attempted systematic approach
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Introduction
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Hate Speech Datasets

Dataset id # Instances Classes

Waseem (2016) 16907 racism, sexism, none

Zampieri (2019) 14100 offensive, none

Founta (2018) 99799 abusive, hateful, spam, normal

Basile (2019) 12971 hate-speech, none

Davidson (2017) 24783 hate-speech, offensive, neither

● Lots of datasets1 from different sources available

● Focus on English, Twitter, and text only

1https://hatespeechdata.com
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Datasets Overview

● Different kinds of abuse

● Imbalances

● Different data collection
strategies



Fortuna et al.: “Toxic, Hateful, Offensive or Abusive? What Are We Really Classifying? An Empirical Analysis of 
                                Hate Speech Datasets” 5

Inter-Dataset Class Similarity

1. Preprocess

2. FastText pre-trained embeddings

3. Calculate tweet centroids

4. Group by classes

5. Average → class centroids

6. PCA

https://www.aclweb.org/anthology/2020.lrec-1.838/
https://www.aclweb.org/anthology/2020.lrec-1.838/


6

Intra-Category Homogeneity 

1. Preprocess

2. FastText pre-trained embeddings

3. Calculate tweet centroids

4. Group by classes

5. Calculate cosine similarity matrix

6. Average entries

Fortuna et al.: “Toxic, Hateful, Offensive or Abusive? What Are We Really Classifying? An Empirical Analysis of 
                                Hate Speech Datasets”

https://www.aclweb.org/anthology/2020.lrec-1.838/
https://www.aclweb.org/anthology/2020.lrec-1.838/
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Macro) F1 Scores

sc
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tf

● Viable classification options in scikit

● Simple neural models with TensorFlow
Binarized 
union of all 
datasets
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LIME

● Local Interpretable Model-agnostic Explanations

● Computes feature importance scores

● Black-box model’s decision function is approximated with a 
locally faithful model.

• LIME samples instances

• Gets predictions using the original model

• Weights them by their distance to the instance being 
explained
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LIME Instance being 
explained

Model’s 
decision 

boundaries

Instances sampled by LIME Local explanation made by LIME



Local Explanation - Complement NB
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Absolute value → sort → normalize → average → normalize
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Feature Importance Distributions

Explanations
over 3500 instances 
with ≥ 6 features
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Feature Importance Similarities

● Generative classifier: ComplementNB

● Discriminative classifier: LinearSVC, LSTMClassifier
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Classifier Prediction Stability
Observe prediction changes by omitting the most important feature word
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● Generative classifier more stable than our discriminative 
ones

● Problem: LIME doesn’t scale well to complex models

● Future: Compare same architecture with different 
hyperparameters

• Example: How many LSTM layers for a more stable 
prediction?

• Use bootstrap significance tests

● Similarities to Dropout layer for neural models

Stability - Remarks/Improvements
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Most Influential Features

● Analysis made over 100 instances

● Over each dataset, for the following classifiers:

• Linear SVC

• Complement NB

• LSTM

● Two different statistics gathered:

• MIF for each decision classifiers made

• MIF for wrong decisions classifiers made
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Most Influential Features
Linear SVCOver all decisions
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Most Influential Features
Complement NBOver all decisions
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Most Influential Features
LSTMOver all decisions
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Most Influential Features
Linear SVCOver wrong decisions
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Most Influential Features
Complement NBOver wrong decisions
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Most Influential Features
LSTMOver wrong decisions
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Comparison of Decisions

● Percentages for the combination of classifiers where they 
made the same decision

● Analysis made over 100 instances

● Over each dataset, for all combinations of the following 
classifiers:

• Linear SVC

• Complement NB

• LSTM
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Comparison of Decisions



● Finding differences instead of similarities is hard

● Findings highly depend on the dataset

● Too many datasets and classifiers to choose from

• Focused approach might be better

● Blackbox approach might be not as insightful
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Problems & Conclusion



Questions
?
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