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Abstract
Understanding class differences and classifier
differences is a problem at the heart of ma-
chine learning. We want to know what drives
the decision-making process. For this, we re-
produce an inter-dataset class similarity and
intra-dataset class homogeneity approach to
find class differences. In an attempt at finding
classifier differences, we use the explainability
package LIME for experiments using its fea-
ture importance scores.

1 Introduction

In machine learning, we are often unsure about
the design choices we make for our classifiers and
how the classification decisions come to be. We
frequently don’t know what makes one set of hy-
perparameters better than another set, or one archi-
tecture superior over another one. Knowing how
a classification decision has been made increases
trust in the system and makes it more transparent.
It is hard to get an intuition about today’s hard-to-
interpret black-box machine learning models. It
is vital to understand or explain the differences
between classifiers to get better insights into their
inner workings. Not only do we need to understand
the classifier differences but also class differences
based on the underlying data.
For our paper we choose hate-speech classifica-
tion as our text classification task. We try to an-
alyze five different datasets for finding class dif-
ferences in Section 2. To analyze the categories
of the datasets, we follow the approach of Fortuna
et al. (2020) in Subsection 2.2. We try to reproduce
their inter-dataset class similarity, Subsection 2.2.1,
followed by their intra-dataset class homogeneity,
Subsection 2.2.2. To obtain a combined dataset
for comparison and for broader abuse detection, we
standardize the labels between the datasets, Subsec-
tion 2.3. For finding classifier differences, Section
3, we first establish and evaluate our viable clas-
sification methods, Subsection 3.1, and then turn

to the LIME (Ribeiro et al., 2016) explainability
package for finding explanation differences, Sub-
section 3.2. Finally we run experiments using the
LIME feature importance explanations, Subsection
3.3, where we look at the average feature impor-
tance distributions, Subsection 3.3.1, the average
cosign similarities of the feature importance scores
between classifiers, Subsection 3.3.2, and a way
of measuring the stability of a prediction when we
omit the most important feature word, Subsection
3.3.3.
The LIME package produces local explanations as
local feature importance scores. The feature impor-
tance scores indicate approximately how influential
a feature, or in our case a word, is for the overall de-
cision of the classifier. There are other explainabil-
ity methods available such as SHAP (Lundberg and
Lee, 2017) and SAGE (Covert et al., 2020), which
produce local feature importance scores and global
feature importance scores, respectively. SHAP and
SAGE showed to be hard to integrate into our text
classification task, because the feature space, the
vocabulary, is too large.

2 Class Differences

For finding class differences we follow the ap-
proach by Fortuna et al. (2020). They analyze mul-
tiple datasets and compare them with experiments
to find ways to improve upon guidelines for data
collection or data annotation strategies in the fu-
ture. We follow their experiments for inter-dataset
class similarity, Subsection 2.2.1, and intra-dataset
class homogeneity, Subsection 2.2.2, for five se-
lected English Twitter hate-speech datasets. We
use the results to create a combined dataset where
we map the datasets’ classes to either non-abusive
or abusive, Subsection 2.3.

2.1 Datasets

There are lots of hate-speech datasets available cov-
ering different kinds of abuse. We want to select



comparable datasets with the same content format.
We therefore choose datasets covering abuse on the
Twitter platform in the English language. Those
constraints narrow down the available datasets by
a lot. We select five promising datasets and refer to
them by names: Davidson (Davidson et al., 2017),
Waseem (Waseem and Hovy, 2016), Basile (Basile
et al., 2019), Zampieri (Zampieri et al., 2019), and
Founta (Founta et al., 2018). We refer to the union
of all datasets as Combined dataset. An overview
of the datasets can be found in Table 1.
The class distributions of the datasets are often
imbalanced as seen in Figure 1. In the David-
son dataset, our second largest dataset containing
24783 tweets, a small amount of tweets is classified
as hate speech (5.77%), the majority as offensive
(77.4%), and the rest as neither. This makes this
dataset the most imbalanced one of our datasets.
The Waseem dataset deals with racism (11.6%)
and sexism (20.2%). We observe that the major-
ity of the dataset does not contain hate or abusive
speech with 68.03%. In the Basile dataset, our
smallest dataset, 12971 tweets, a more balanced
class distribution can be seen with 42.1% of the
tweets classified as hate speech and 57.9% as not
containing hate speech. For the Zampieri dataset
we see a slightly more imbalanced dataset again,
with the classes offensive (32.9%) and the majority
not offensive with 67.1%. The Founta dataset is by
far our largest dataset containing 99799 tweets. It
also has the most classes with normal (53.9%), abu-
sive (27.1%), hateful (5.0%), and spam (14.1%).
All datasets have their imbalances in their class dis-
tribution. Often this has to do with the way the data
has been selected from Twitter. Usually tweets are
collected using a keyword search for offensive or
abusive words. The datasets vary heavily by their
definitions of the classes, topic and authors of the
tweets, and time period in terms of current events.

2.2 Analyzing categories

We follow the approach of Fortuna et al. (2020)
and compare the categories across the different
hate speech datasets. We compare the similarities
between the categories of the various datasets and
the homogeneity of each single category in the
datasets. We do this by computing centroids of
the tweets by averaging the FastText (Bojanowski
et al., 2017) embeddings of each word in the tweet.
For both comparisons we start the computation as
follows:

1. Pre-process the tweets by lowercasing all
words, normalizing user-names, urls, hash-
tags, and other elements using the ekphrasis
(Baziotis et al., 2017) library. We use ekphra-
sis over NLTK since it is specialized to deal
with texts from social networking services
such as Twitter in our case.

2. Embed the words using FastText pre-trained
300-dimension English Common Crawl em-
beddings (Mikolov et al., 2018). They state
in Fortuna et al. (2020), that they trained Fast-
Text embeddings using the English Wikipedia
pre-trained embeddings, but as far as our re-
search is concerned, there is no way to fine-
tune the embedding using FastText as of now.
We just use the provided embeddings without
training them.

3. Compute the tweets’ centroids by averaging
the word embeddings of all the words in the
respective tweet.

2.2.1 Inter-dataset class similarity
In this Subsection we compare the categories of all
datasets by their semantic similarity. We do this by
continuing the procedure in Subsection 2.2 with:

4. Compute the centroids of the categories by
averaging the the tweets centroids of each cat-
egory.

After acquiring the centroids of each category
we reduce the dimensionality of those 300-
dimensional class centroid vectors to a 2D rep-
resentation by performing a Principal Component
Analysis (PCA) (Pearson, 1901). The results of
this PCA can be seen in Figure 2. We will stan-
dardize the labels, in Subsection 2.3, to abusive and
non-abusive, red and blue respectively in the Fig-
ure 2. The abusive classes and non-abusive classes
group relatively well into two distinct areas. The
PCA results of Fortuna et al. (2020) shows the sim-
ilarities between abusive classes without showing
non-abusive categories in order to make a more
fine-grained sub-categorization of abuse. We chose
to also include the non-abusive classes and won’t
make such a fine-grained analysis for merging the
categories of the datasets.

2.2.2 Intra-dataset class homogeneity
This Subsection compares the categories using their
internal homogeneity. Homogeneity reflects the
variation of tweets in a class. If the tweets inside a



category are all very similar the category is more
homogeneous if they are less similar they are more
inhomogeneous. For computing the homogeneity
we append the following steps to the process of
Subsection 2.2:

4. Compute the cosign similarity distance be-
tween all tweets from the same category.

5. Average the cosign similarities of the same
category to obtain the homogeneity metric of
a category.

Figure 3 shows the result of this procedure. The
non-abusive classes are grouped together below
being less homogeneous than the abusive classes
grouped above. This makes intuitively sense since
the non-abusive classes are more broadly defined
then the abusive classes and therefore more varied.
Compared with Figure 2 of Fortuna et al. (2020)
there seem to be some issues with either our calcu-
lations or theirs. Our resulting homogeneity scores
are larger by one magnitude. The largest of their
scores is roughly 0.04, whereas ours is at roughly
0.53. The relative sorted ordering of the classes is
also off for the Waseem and Davidson dataset. We
could not reproduce their numbers after checking
the procedure multiple times. It might have to do
with different pre-processing steps and the use of
other embeddings, but we also checked for those
cases.

2.3 Label standardization between datasets

Similar to the idea of Fortuna et al. (2020), we
standardize our labels so that the categories of
the datasets are comparable across the different
datasets. We choose a binarization approach where
we map the class labels of dataset to the cate-
gories non-abusive and abusive. We do not make
a fine-grained destinction between different kinds
of abuse. Later on in Subsection 3.1, we compare
the F1-scores over different classifiers with the bi-
narized datasets and also evaluate the performance
on each dataset when we train the classifiers with
all the datasets combined.

3 Classifier Differences

In this Section we try to find differences with clas-
sifiers. We first denote and evaluate the different
classification options, Subsection 3.1, then intro-
duce the LIME explainability package, Subsection

3.2, for running experiments using its feature im-
portance explanations, Subsection 3.3. In our ex-
periments, we look at the average feature impor-
tance distributions, Subsection 3.3.1, the average
cosign similarities of the feature importance scores,
Subsection 3.3.2, and a possible prediction stability
metric, Subsection 3.3.3.

3.1 Classifiers

There are multiple viable ways to do text classifi-
cation such as hate-speech classification. We look
at seven viable, mostly classical machine learn-
ing, classification approaches from scikit-learn (Pe-
dregosa et al., 2011) and fit them to our datasets
for evaluation. We do the same for three different
simple neural network architectures implemented
using TensorFlow (Abadi et al., 2015). Table 2
shows the classifiers trained and evaluated macro
F1-scores on each dataset. The classifiers up top
are the almost out-of-the-box scikit-learn classi-
fiers using tf-idf features: LinearSVC, GaussianNB,
ComplementNB, DecisionTreeClassifier, KNeigh-
borsClassifier, RandomForestClassifier, and MLP-
Classifier.
In the bottom part of the Table 2, we have our sim-
ple neural networks using small 16-dimensional
word embeddings as features: DenseClassifier us-
ing a hidden 15-dimensional dense layer, LSTM-
Classifier using a 32+32-dimensional Bidirectional
LSTM layer, and CNNClassifier using an 1D con-
volution layer with 64 filters and kernal size of
8 followed by a max-pooling layer and a 10-
dimensional dense layer. Everything neural net-
work is of course followed by the final dense clas-
sification layer.
Looking further at the macro F1-scores of Table 2,
we can observe that the LinearSVC classifier per-
forms well compared to our other classifiers. Com-
paring the two naive Bayes classifiers, GaussianNB
and ComplementNB, we see that ComplementNB
performs significantly better. This might be mainly
because the ComplementNB is specially designed
to handle our imbalanced datasets. Our neural clas-
sifiers seem to work equally well to other classifiers
on the Combined dataset where we binarized our
labels.
In an attempt to compare the performances of the
classifiers across all datasets we also run a compar-
ison over the binarized versions of the datasets. For
binarizing the labels, we map the classes to abusive
and non-abusive according to the inter-dataset class



similarity PCA results Figure 2. Each binarized
dataset has now the same classes. In Table 3 we
can observe the F1-scores evaluated on the respec-
tive test-set of the dataset for classifiers trained on
the individual training-set of the respective dataset,
indicated by superscript i, and classifiers trained on
the training-set of the Combined dataset, indicated
by superscript c. We can not compare the F1-scores
with our previous Table 2, which shows macro F1-
scores over multiple classes. We observe that we
mostly lose points in our F1-score if we train on
the Combined dataset compared to the individually
trained ones. But there are some cases where we
improve our scores. Using a classifier trained on
the Combined dataset might be a way to create a
general abuse detection model over different kinds
of abuse. Although, we have to keep in mind that
59.2% of the data in the Combined dataset stems
from the large Founta dataset.

3.2 LIME
We want to use a explainability method for find-
ing further classifier differences. For this we use
the LIME (Ribeiro et al., 2016) package, which
is short for local interpretable model-agnostic ex-
planations. LIME can be agnostically applied to
a black-box model to get a local explanation for
a decision instance. Figure 4 shows an example
explanation for an instance of the Basile dataset
using the LinearSVC classifier. LIME is approxi-
mating the prediction of the classifier locally with
an interpretable model. In the example the classi-
fier correctly predicts the hate speech class for the
tweet. The feature importance scores located in the
top-right indicate the most relevant words used for
the predictions. The most influential words for the
prediction are also highlighted in the tweet’s text.
The orange color contributes to hate speech and the
blue color to the none class. We can observe, that
the explanation correctly indicates the swear words
as most important contributors for this hate speech
instance.

3.3 LIME experiments
With LIME, introduced in the previous Subsection
3.2, we get local explanations for predictions of
single instances. We want to attempt to combine
multiple local explanations into a global explana-
tion to get a global insight into the classifier dif-
ferences. For this we focus on three classifiers
in particular: ComplementNB, LinearSVC, and
LSTMClassifier. The ComplementNB is a genera-

tive classifier, whereas the other two are discrimi-
native ones. We run the LIME explainer for each
classifier and each dataset for up to 3500 test-set in-
stances, filtering out the few tweets containing less
than 6 unique features i.e. words. We then try run
more global experiments in the next Subsections.

3.3.1 Feature importance distributions
In our first experiment using the collected local
explanations in form of feature importance scores,
we calculate average feature importance distribu-
tions. The average distribution of those feature
importance scores might vary with with classifiers
and with the datasets. We want to compare the
classifiers and analyze their average reliance on the
top features, whether a classifier usually focuses
on fewer or more features for its prediction than
another. To do this we try to get an average fea-
ture distribution of the feature importance scores.
We do this by taking the absolute values of the
feature importance scores, sorting the values, nor-
malizing each distribution to one, averaging over
all distributions, and normalizing again the aver-
aged distribution to one. The results of this process
can be seen in Figure 5. The datasets’ class dis-
tributions are shown below to better compare the
distributions considering the class imbalances.
In Figure 5, the datasets Waseem, Basile, and
Zampieri show no significant differences in the
distributions among the classifiers. There are sig-
nificant differences in the Davidson and Founta
datasets. The discriminative classifiers, LinearSVC
and LSTMClassifier, focus more on the most impor-
tant feature, whereas the generative classifier, Com-
plementNB, has a more spread out feature distri-
bution focusing on more features on average. The
Davidson and Founta datasets seem to have more
discriminative features than the Wassem, Dasile,
and Zampieri datasets. Those datasets might con-
tain tweets with more discriminative words such as
swear words in the case of hate-speech detection.

3.3.2 Feature importance similaities
The second experiment takes a look at the aver-
age cosign similarity of the feature importance
scores between classifier pairs over the datasets.
We would expect the feature importance scores
of an instance to be very similar across different
classifiers. Figure 6 shows the resulting cosign sim-
ilarities of feature importance scores averaged over
many explanations. As expected, the feature impor-
tance scores are similar. We can observe that the



ComplementNB is the least similar to the LSTM-
Classifier, and a bit more similar to the LinearSVC
classifier. The two discriminative classifiers, Lin-
earSVC and LSTMClassifier, are the most similar
to each other. This seems to be consistent with
the results of Subsection 3.3.1, where there are
significant differences between generative and dis-
criminative classifiers.

3.3.3 Classifier prediction stabilities
In this third experiment we attempt a potential clas-
sifier stability metric. We want further analyze
how much the classifiers are dependent on the most
influential feature. If we were to omit this most
important feature, how often would our prediction
change, in other words how stable would our pre-
diction be. We can observe in Table 4 how much
our F1-score changes if we omit the most influ-
ential feature word. ComplementNB seems to be
usually affected the least by this omission. This
might again be because of its nature as generative
classifier. It is intuitive, that the performance of
discriminative classifiers is more affected since we
omit the most important discriminative feature of
the instance. All three classifiers are performing
significantly worse on the Zampieri dataset after
the omission for an unknown reason.

4 Discussion

In this paper we where able to find some obvious
class differences and classifier differences. We
tried to reproduce the inter-dataset class similar-
ity, Subsection 2.2.1, and intra-dataset class homo-
geneity, Subsection 2.2.2. Those two approaches
showed some differences between the classes but in
the end the understanding of the class differences
is still lacking. Better ways to get more subtle un-
derstanding need yet to be analyzed.
As for classifier differences, Section 2, we looked at
multiple classifiers and compared their (macro) F1-
score performances. We observed that the classi-
fiers perform differently but we still mostly lack the
understanding why they differed. With our three
experiments, average feature importance distribu-
tions, Subsection 3.3.1, average feature importance
similarities, Subsection 3.3.2, and classifier pre-
diction stabilities, Subsection 3.3.3, we observed
the obvious significant differences with between
our generative classifier and our two discriminative
classifiers. The transferability of those experiments
for other more subtle comparisons seems question-
able. If we were to compare very similar classifiers

of the same architecture with only different hyper-
parameters, the outcomes of those experiments will
probably be too similar to be of significant use. For
the stability experiment, there also seems to be a
problem with possibly changing the ground truth
when we omit the most important feature from the
instance. If we drop for example the swear word re-
sponsible for the abuse classification ground truth,
we might now have a non-abusive instance with a
wrong target. LIME might also not be suitable, in
terms of being to unstable, in order to generate a
global explanation from it.
Overall our results highly depended on the choice
of data and how imbalanced the datasets are. Using
a model-agnostic black-box approach for getting an
understanding of the differences seems to be still
rather difficult. Trying a more focused approach
with only comparing two classifiers and using more
model-specific methods might turn out to be more
promising.
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Dataset id Classes Number of Instances Reference

Davidson hate-speech, offensive, neither 24783 (Davidson et al., 2017)
Waseem none, racism, sexism 16907 (Waseem and Hovy, 2016)
Basile none, hate-speech 12971 (Basile et al., 2019)
Zampieri none, offensive 14100 (Zampieri et al., 2019)
Founta normal, abusive, hateful, spam 99799 (Founta et al., 2018)

Table 1: Overview of the selected hate-speech datasets. The data instances in each dataset are English tweets from
the Twitter social networking service. Each dataset covers differnt kinds of abuse.
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Figure 1: Class distributions of the datasets. There are class imbalances in all datasets but the Davidson dataset is
imbalanced the most, containing only a relatively small amount of tweets of the none/neither class.
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Figure 2: Inter-dataset class similarity PCA results. The labels have been categorized into the binary categories:
non-abusive and abusive.

Davidson Waseem Basile Zampieri Founta Combined

LinearSVC 68.7 76.9 72.5 70.5 64.2 87.8
GaussianNB 53.6 41.4 64.0 55.6 45.7 72.7
ComplementNB 61.0 73.2 73.2 63.0 55.9 83.3
DecisionTreeClassifier 66.6 71.8 66.7 64.3 59.2 85.0
KNeighborsClassifier 55.2 65.4 66.6 60.8 48.2 73.8
RandomForestClassifier 56.6 73.7 71.7 66.4 57.1 86.9
MLPClassifier 68.3 72.9 69.8 66.9 61.6 85.1

DenseClassifier 67.1 74.3 70.7 68.0 63.2 86.6
LSTMClassifier 61.6 73.0 70.0 66.9 64.2 87.9
CNNClassifier 62.7 44.1 70.5 69.4 64.1 87.8

Table 2: Macro F1-scores for different classifier choices trained and evaluated on each dataset. The group of
classifiers up top lists viable classifiers offered by scikit-learn, whereas the group below consists of simple neural
networks implemented in TensorFlow.
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Figure 3: Intra-dataset class homogeneity and the number of tweets for each class.

Davidson Waseem Basile Zampieri Founta Combined
iLinearSVC 97.2 71.0 67.2 56.9 89.6 85.0
cLinearSVC 95.4 67.5 68.1 51.8 87.9
iGaussianNB 89.4 48.5 60.3 42.1 72.1 67.3
cGaussianNB 80.3 42.9 48.7 33.4 71.2
iComplementNB 94.5 68.7 68.7 43.4 83.6 80.5
cComplementNB 94.6 60.6 61.4 49.7 82.4
iDecisionTreeClassifier 96.6 67.0 61.2 50.8 86.5 82.0
cDecisionTreeClassifier 94.4 61.6 63.6 48.7 85.0
iKNeighborsClassifier 92.5 57.5 62.3 41.3 70.3 67.2
cKNeighborsClassifier 82.6 45.1 55.2 33.8 67.0
iRandomForestClassifier 95.3 69.6 65.0 47.9 88.7 83.8
cRandomForestClassifier 95.0 58.1 58.3 39.1 88.8
iMLPClassifier 96.1 70.0 64.8 54.1 87.5 82.1
cMLPClassifier 93.8 61.5 62.8 51.3 85.4
iDenseClassifier 96.5 68.2 64.6 54.4 87.9 84.1
cDenseClassifier 96.0 67.0 66.7 54.7 86.5
iLSTMClassifier 96.6 70.1 65.7 54.6 88.7 85.6
cLSTMClassifier 96.7 67.9 68.1 57.3 88.0
iCNNClassifier 95.6 71.1 66.5 57.1 89.1 85.6
cCNNClassifier 96.9 68.5 68.0 56.9 88.4

Table 3: Comparable F1-scores for the classifiers trained on the binarized datasets, with classes non-abusive and
abusive. Superscript i indicates that the classifier is trained and evaluated on the respective dataset of the column.
Superscript c indicates that the classifier is trained on the Combined dataset and evaluated for each dataset of the
columns.



Figure 4: Example local explanation produced by LIME using the LinearSVC classifier with the Basile instance:
“You hoes weak, on Facebook but be in the same bitch likes that u be hating on.” The classifier correctly predicts
the hate speech class. The upper right shows the feature importance scores of the 6 most important features i.e.
words.
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Figure 5: Average feature importance distributions on top with the datasets’ class distributions below.
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Figure 6: Average cosign similarity between feature importance scores of a classifier pair for each dataset.

F1 F1 (omitted) abs. rel. %

Davidson ComplementNB 58.35 46.17 -12.18 -20.87
LinearSVC 66.23 44.35 -21.88 -33.03
LSTMClassifier 60.88 39.72 -21.16 -34.76

Waseem ComplementNB 73.80 60.33 -13.47 -18.26
LinearSVC 76.95 56.03 -20.92 -27.18
LSTMClassifier 72.93 54.53 -18.40 -25.23

Basile ComplementNB 68.82 53.03 -15.79 -22.94
LinearSVC 67.12 48.63 -18.49 -27.55
LSTMClassifier 65.46 46.55 -18.91 -28.88

Zampieri ComplementNB 40.77 13.64 -27.14 -66.55
LinearSVC 55.92 22.33 -33.59 -60.07
LSTMClassifier 53.52 25.62 -27.90 -52.13

Founta ComplementNB 56.39 46.18 -10.21 -18.11
LinearSVC 62.53 34.11 -28.43 -45.46
LSTMClassifier 62.46 35.72 -26.74 -42.81

Combined ComplementNB 82.09 69.11 -12.98 -15.81
LinearSVC 85.91 48.52 -37.40 -43.53
LSTMClassifier 86.54 48.69 -37.85 -43.74

Table 4: Stability of the macro F1-score for the selected classifiers over all datasets when omitting the most
important feature i.e. word of an instance for reclassification.


